Learning Super-Features for Image Retrieval

Related tags

Deep Learningfire
Overview

Learning Super-Features for Image Retrieval

This repository contains the code for running our FIRe model presented in our ICLR'22 paper:

@inproceedings{superfeatures,
  title={{Learning Super-Features for Image Retrieval}},
  author={{Weinzaepfel, Philippe and Lucas, Thomas and Larlus, Diane and Kalantidis, Yannis}},
  booktitle={{ICLR}},
  year={2022}
}

License

The code is distributed under the CC BY-NC-SA 4.0 License. See LICENSE for more information. It is based on code from HOW, cirtorch and ASMK that are released under their own license, the MIT license.

Preparation

After cloning this repository, you must also have HOW, cirtorch and ASMK and have them in your PYTHONPATH.

  1. install HOW
git clone https://github.com/gtolias/how
export PYTHONPATH=${PYTHONPATH}:$(realpath how)
  1. install cirtorch
wget "https://github.com/filipradenovic/cnnimageretrieval-pytorch/archive/v1.2.zip"
unzip v1.2.zip
rm v1.2.zip
export PYTHONPATH=${PYTHONPATH}:$(realpath cnnimageretrieval-pytorch-1.2)
  1. install ASMK
git clone https://github.com/jenicek/asmk.git
pip3 install pyaml numpy faiss-gpu
cd asmk
python3 setup.py build_ext --inplace
rm -r build
cd ..
export PYTHONPATH=${PYTHONPATH}:$(realpath asmk)
  1. install dependencies by running:
pip3 install -r how/requirements.txt
  1. data/experiments folders

All data will be stored under a folder fire_data that will be created when running the code; similarly, results and models from all experiments will be stored under folder fire_experiments

Evaluating our ICLR'22 FIRe model

To evaluate on ROxford/RParis our model trained on SfM-120k, simply run

python evaluate.py eval_fire.yml

With the released model and the parameters found in eval_fire.yml, we obtain 90.3 on the validation set, 82.6 and 62.2 on ROxford medium and hard respectively, 85.2 and 70.0 on RParis medium and hard respectively.

Training a FIRe model

Simply run

python train.py train_fire.yml -e train_fire

All training outputs will be saved to fire_experiments/train_fire.

To evaluate the trained model that was saved in fire_experiments/train_fire, simply run:

python evaluate.py eval_fire.yml -e train_fire -ml train_fire

Pretrained models

For reproducibility, we provide the following model weights for the architecture we use in the paper (ResNet50 without the last block + LIT):

  • Model pre-trained on ImageNet-1K (with Cross-Entropy, the pre-trained model we use for training FIRe) (link)
  • Model trained on SfM-120k trained with FIRe (link)

They will be automatically downloaded when running the training / testing script.

Owner
NAVER
NAVER
This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".

BiCAT This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transfor

John 15 Dec 06, 2022
🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

Rishik Mourya 48 Dec 20, 2022
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Luke Tonin 195 Dec 17, 2022
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
Code release for NeuS

NeuS We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inpu

Peng Wang 813 Jan 04, 2023
JugLab 33 Dec 30, 2022
Codes for "Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier"

Deep-RTC [project page] This repository contains the source code accompanying our ECCV 2020 paper. Solving Long-tailed Recognition with Deep Realistic

Gina Wu 16 May 26, 2022
Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification tasks

Uniformer - Pytorch Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification ta

Phil Wang 90 Nov 24, 2022
EssentialMC2 Video Understanding

EssentialMC2 Introduction EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2( relatio

Alibaba 106 Dec 11, 2022
FLSim a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API

Federated Learning Simulator (FLSim) is a flexible, standalone core library that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such a

Meta Research 162 Jan 02, 2023
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
[CVPR2021] De-rendering the World's Revolutionary Artefacts

De-rendering the World's Revolutionary Artefacts Project Page | Video | Paper In CVPR 2021 Shangzhe Wu1,4, Ameesh Makadia4, Jiajun Wu2, Noah Snavely4,

49 Nov 06, 2022
Layer 7 DDoS Panel with Cloudflare Bypass ( UAM, CAPTCHA, BFM, etc.. )

Blood Deluxe DDoS DDoS Attack Panel includes CloudFlare Bypass (UAM, CAPTCHA, BFM, etc..)(It works intermittently. Working on it) Don't attack any web

272 Nov 01, 2022
Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
Magisk module to enable hidden features on Android 12 Developer Preview 1.

Android 12 Extensions This is a Magisk module that enables hidden features on Android 12 Developer Preview 1. Features Scrolling screenshots Wallpaper

Danny Lin 384 Jan 06, 2023
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023