Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Overview

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

overview

This material is supplementray code for paper accepted in ICDAR 2021

  1. We highly recommend to use docker image because our model contains custom operation which depends on framework and cuda version.
  2. We provide trained model for ICDAR 2017, 2013 which is in final_checkpoint_ch8 and for ICDAR 2015 which is in final_checkpoint_ch4
  3. This code is mainly focused on inference. To train our model, training gpu like V100 is needed. please check our paper in detail.

REQUIREMENT

  1. Nvidia-docker
  2. Tensorflow 1.14
  3. Miminum GPU requirement : NVIDIA GTX 1080TI

INSTALLATION

  • Make docker image and container
docker build --tag rbimage ./dockerfile
docker run --runtime=nvidia --name rbcontainer -v /rotated-box-is-back-path:/rotated-box-is-back -i -t rbimage /bin/bash
  • build custom operations in container
cd /rotated-box-is-back/nms 
cmake ./
make
./shell.sh

SAMPLE IMAGE INFERENCE

cd /rotated-box-is-back/
python viz.py --test_data_path=./sample --checkpoint_path=./final_checkpoint_ch8 --output_dir=./sample_result  --thres 0.6 --min_size=1600 --max_size=2000

ICDAR 2017 INFERENCE

  1. please replace icdar_testset_path to your-icdar-2017-testset-folder path.
python viz.py --test_data_path=icdar_testset_path --checkpoint_path=./final_checkpoint_ch8 --output_dir=./ic17  --thres 0.6 --min_size=1600 --max_size=2000

ICDAR 2015 INFERENCE

  1. please replace icdar_testset_path to your-icdar-2015-testset-folder path.
  2. To converting evalutation format. Convert result text file like below
python viz.py --test_data_path=icdar_testset_path --checkpoint_path=./final_checkpoint_ch4 --output_dir=./ic15  --thres 0.7 --min_size=1100 --max_size=2000
python text_postprocessing.py -i=./ic15/ -o=./ic15_format/ -e True

ICDAR 2013 INFERENCE

  1. please replace icdar_testset_path to your-icdar-2013-testset-folder path.
  2. To converting evalutation format. Convert result text file like below
python viz.py --test_data_path=icdar_testset_path --checkpoint_path=./final_checkpoint_ch8 --output_dir=./ic13  --thres 0.55 --min_size=700 --max_size=900
python text_postprocessing.py -i=./ic13/ -o=./ic13_format/ -e True -m rec

EVALUATION TABLE

IC13 IC15 IC17
P R F P R F P R F
95.9 89.1 92.4 89.7 84.2 86.9 83.4 68.2 75.0

TRAINING

  1. It can be trained below command line
python train_refine_estimator.py --input_size=1024 --batch_size=2 --checkpoint_path=./finetuning --training_data_path=your-image-path --training_gt_path=your-gt-path  --learning_rate=0.00001 --max_epochs=500  --save_summary_steps=1000 --warmup_path=./final_checkpoint_ch8

ACKNOWLEDGEMENT

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 1711125972, Audio-Visual Perception for Autonomous Rescue Drones).

CITATION

If you found it is helpfull for your research, please cite:

Lee J., Lee J., Yang C., Lee Y., Lee J. (2021) Rotated Box Is Back: An Accurate Box Proposal Network for Scene Text Detection. In: Lladós J., Lopresti D., Uchida S. (eds) Document Analysis and Recognition – ICDAR 2021. ICDAR 2021. Lecture Notes in Computer Science, vol 12824. Springer, Cham. https://doi.org/10.1007/978-3-030-86337-1_4

Owner
NCSOFT
NCSOFT Open Sources
NCSOFT
Deep Inertial Prediction (DIPr)

Deep Inertial Prediction For more information and context related to this repo, please refer to our website. Getting Started (non Docker) Note: you wi

Arcturus Industries 12 Nov 11, 2022
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
SIR model parameter estimation using a novel algorithm for differentiated uniformization.

TenSIR Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate m

The Spang Lab 4 Nov 30, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
Discord bot-CTFD-Thread-Parser - Discord bot CTFD-Thread-Parser

Discord bot CTFD-Thread-Parser Description: This tools is used to create automat

15 Mar 22, 2022
Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch

Segformer - Pytorch Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch. Install $ pip install segformer-pytorch

Phil Wang 208 Dec 25, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
Code for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

274 Dec 06, 2022
NOMAD - A blackbox optimization software

################################################################################### #

Blackbox Optimization 78 Dec 29, 2022
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022
Time Dependent DFT in Tamm-Dancoff Approximation

Density Function Theory Program - kspy-tddft(tda) This is an implementation of Time-Dependent Density Functional Theory(TDDFT) using the Tamm-Dancoff

Peter Borthwick 2 Nov 17, 2022
Pytorch cuda extension of grid_sample1d

Grid Sample 1d pytorch cuda extension of grid sample 1d. Since pytorch only supports grid sample 2d/3d, I extend the 1d version for efficiency. The fo

lyricpoem 24 Dec 03, 2022
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021
SurfEmb (CVPR 2022) - SurfEmb: Dense and Continuous Correspondence Distributions

SurfEmb SurfEmb: Dense and Continuous Correspondence Distributions for Object Pose Estimation with Learnt Surface Embeddings Rasmus Laurvig Haugard, A

Rasmus Haugaard 56 Nov 19, 2022
Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

HiFi-GAN+ This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All

Brent M. Spell 134 Dec 30, 2022
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs » Report Bug · Request Feature Table of Contents About The Project Built

remsens-lim 2 Apr 28, 2022
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a

Jia Li 256 Dec 24, 2022
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution.

convolver Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution. Created by Sean Higley

Sean Higley 1 Feb 23, 2022