On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Overview

Understanding Bayesian Classification

This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification by Sanyam Kapoor, Wesley J Maddox, Pavel Izmailov, and Andrew Gordon Wilson.

Key Ideas

Aleatoric uncertainty captures the inherent randomness of the data, such as measurement noise. In Bayesian regression, we often use a Gaussian observation model, where we control the level of aleatoric uncertainty with a noise variance parameter. By contrast, for Bayesian classification we use a categorical distribution with no mechanism to represent our beliefs about aleatoric uncertainty. Our work shows that:

  • Explicitly accounting for aleatoric uncertainty significantly improves the performance of Bayesian neural networks.
Aleatoric Conceptual
In classification problems, we do not have a direct way to specify our assumptions about aleatoric uncertainty. In particular, we might use the same Bayesian neural network model if we know the data contains label noise (scenario A) and if we know that there is no label noise (scenario B), leading to poor performance in at least one of these scenarios.
  • We can match or exceed the performance of posterior tempering by using a Dirichlet observation model, where we explicitly control the level of aleatoric uncertainty, without any need for tempering.
Tiny-Imagenet
Accounting for the label noise via the noisy Dirichlet model or the tempered softmax likelihood significantly improves accuracy and test negative log likelihood accross the board, here shown for the Tiny Imagenet dataset. The optimal performance is achieved for different values of temperature in the tempered softmax likelihood and the noise parameter for the noisy Dirichlet likelihood.
  • The cold posterior effect is effectively eliminated by properly accounting for aleatoric uncertainty in the likelihood model.
Cold Posterior Effect
BMA test accuracy for the noisy Dirichlet model with noise parameter 1e−6 and the softmax likelihood as a function of posterior temperature on CIFAR-10. The noisy Dirichlet model shows no cold posterior effect.

Setup

All requirements are listed in environment.yml. Create a conda environment using:

conda env create -n <env_name>

Next, ensure Python modules under the src folder are importable as,

export PYTHONPATH="$(pwd)/src:${PYTHONPATH}"

To use bnn_priors, see respective installation instructions.

Usage

The main script to run all SGMCMC experiments is experiments/train_lik.py.

As an example, to run cyclical SGHMC with our proposed noisy Dirichlet likelihood on CIFAR-10 with label noise, run:

python experiments/train_lik.py --dataset=cifar10 \
                                --label_noise=0.2 \
                                --likelihood=dirichlet \
                                --noise=1e-2 \
                                --prior-scale=1 \
                                --sgld-epochs=1000 \
                                --sgld-lr=2e-7 \
                                --n-cycles=50 \
                                --n-samples=50

Each argument to the main method can be used as a command line argument due to Fire. Weights & Biases is used for all logging. Configurations for various Weights & Biases sweeps are also available under configs.

License

Apache 2.0

TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
Turning SymPy expressions into JAX functions

sympy2jax Turn SymPy expressions into parametrized, differentiable, vectorizable, JAX functions. All SymPy floats become trainable input parameters. S

Miles Cranmer 38 Dec 11, 2022
[NeurIPS'20] Self-supervised Co-Training for Video Representation Learning. Tengda Han, Weidi Xie, Andrew Zisserman.

CoCLR: Self-supervised Co-Training for Video Representation Learning This repository contains the implementation of: InfoNCE (MoCo on videos) UberNCE

Tengda Han 271 Jan 02, 2023
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

keven 198 Dec 20, 2022
Bounding Wasserstein distance with couplings

BoundWasserstein These scripts reproduce the results of the article Bounding Wasserstein distance with couplings by Niloy Biswas and Lester Mackey. ar

Niloy Biswas 1 Jan 11, 2022
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 07, 2022
A Pythonic library for Nvidia Codec.

A Pythonic library for Nvidia Codec. The project is still in active development; expect breaking changes. Why another Python library for Nvidia Codec?

Zesen Qian 12 Dec 27, 2022
Real-time VIBE: Frame by Frame Inference of VIBE (Video Inference for Human Body Pose and Shape Estimation)

Real-time VIBE Inference VIBE frame-by-frame. Overview This is a frame-by-frame inference fork of VIBE at [https://github.com/mkocabas/VIBE]. Usage: i

23 Jul 02, 2022
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022
Simple image captioning model - CLIP prefix captioning.

Simple image captioning model - CLIP prefix captioning.

688 Jan 04, 2023
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

beringresearch 285 Jan 04, 2023
Curating a dataset for bioimage transfer learning

CytoImageNet A large-scale pretraining dataset for bioimage transfer learning. Motivation In past few decades, the increase in speed of data collectio

Stanley Z. Hua 9 Jun 20, 2022
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
Deep functional residue identification

DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio

Flatiron Institute 156 Dec 25, 2022
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021