Implementation for the "Surface Reconstruction from 3D Line Segments" paper.

Overview

Surface Reconstruction from 3D Line Segments

Surface reconstruction from 3d line segments.
Langlois, P. A., Boulch, A., & Marlet, R.
In 2019 International Conference on 3D Vision (3DV) (pp. 553-563). IEEE. Project banner

Installation

  • [IMPORTANT NOTE] The plane arrangement is given as a Linux x64 binary. Please let us know if you need it for an other platform/compiler or if you have issues with it.

  • MOSEK 8 :

    • Download
    • Installation instructions.
    • Request a license (free for academics), and put it in ~/mosek/mosek.lic.
    • Set the mosek directory in the MOSEK_DIR environment variable such that <MOSEK_DIR>/8/tools/platform/linux64x86/src/fusion_cxx is a valid path:

    export MOSEK_DIR=/path/to/mosek

    • Make sure that the binaries are available at runtime:

    export LD_LIBRARY_PATH=$MOSEK_DIR/8/tools/platform/linux64x86/bin:$LD_LIBRARY_PATH

  • Clone this repository: git clone https://github.com/palanglois/line-surface-reconstruction.git

  • Go to the directory: cd line-surface-reconstruction

  • CGAL : Version 4.11 is required:

git clone https://github.com/CGAL/cgal.git external/cgal
cd external/cgal
git checkout releases/CGAL-4.11.3
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make
cd ../../..
  • Make a build directory: mkdir build
  • Go to the build directory: cd build
  • Prepare the project with cmake: cmake -DCMAKE_BUILD_TYPE=Release ..
  • Compile the project: make

Examples

  • Out of the box examples are available in demo.sh

  • An example of a full reconstruction procedure from a simple set of images is available here

  • A benchmark example for an artificial textureless scene (with quantitative evaluation) is available here.

Programs

For every program, a simple documentation is available by running ./<program_name> -h

  • ransac_on_lines detects planes in a line set.
  • line_based_recons_param performs reconstruction out of a set of lines and detected planes. Computing the linear program is time consuming, but optimizing is way faster. Therefore, this program 1st computes the linear program and enters a loop in which you can manually set the optimization parameters in order to find the optimal ones for your reconstruction.
  • line_based_recons does the same as line_based_recons_param but the optimization parameters are set directly in the command line. Use it only if you know the optimal parameters for the reconstruction.
  • mesh_metrics provides evaluation metrics between two meshes.

Visualization

Reconstruction .ply files can be visualized directly in programs such as Meshlab or CloudCompare.

A simple OpenGL viewer is available to directly visualize the json line files.

Raw data

The raw data for Andalusian and HouseInterior is available here. For both examples, it includes the raw images as well as the full calibration in .nvm (VisualSFM) format.

For HouseInterior, a ground truth mesh is also available.

License

Apart from the code located in the external directory, all the code is provided under the GPL license.

The binaries and code provided in the external/PolyhedralComplex directory is provided under the Creative Commons CC-BY-SA license.

If these licenses do not suit your needs, please get in touch with us.

Citing this work

@inproceedings{langlois:hal-02344362,
TITLE = {{Surface Reconstruction from 3D Line Segments}},
AUTHOR = {Langlois, Pierre-Alain and Boulch, Alexandre and Marlet, Renaud},
URL = {https://hal.archives-ouvertes.fr/hal-02344362},
BOOKTITLE = {{2019 International Conference on 3D Vision (3DV)}},
ADDRESS = {Qu{\'e}bec City, Canada},
PUBLISHER = {{IEEE}},
PAGES = {553-563},
YEAR = {2019},
MONTH = Sep,
DOI = {10.1109/3DV.2019.00067},
} 
PyTorch package for the discrete VAE used for DALL·E.

Overview [Blog] [Paper] [Model Card] [Usage] This is the official PyTorch package for the discrete VAE used for DALL·E. Installation Before running th

OpenAI 9.5k Jan 05, 2023
Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound"

merlot_reserve Code release for "MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound" MERLOT Reserve (in submission) is a mo

Rowan Zellers 92 Dec 11, 2022
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
Base pretrained models and datasets in pytorch (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet)

This is a playground for pytorch beginners, which contains predefined models on popular dataset. Currently we support mnist, svhn cifar10, cifar100 st

Aaron Chen 2.4k Dec 28, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging.

SweiNet SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging. SweiNet takes as in

Felix Jin 3 Mar 31, 2022
Configure SRX interfaces with Scrapli

Configure SRX interfaces with Scrapli Overview This example will show how to configure interfaces on Juniper's SRX firewalls. In addition to the Pytho

Calvin Remsburg 1 Jan 07, 2022
End-to-end beat and downbeat tracking in the time domain.

WaveBeat End-to-end beat and downbeat tracking in the time domain. | Paper | Code | Video | Slides | Setup First clone the repo. git clone https://git

Christian J. Steinmetz 60 Dec 24, 2022
A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022
The codebase for Data-driven general-purpose voice activity detection.

Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S

Heinrich Dinkel 75 Nov 27, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
Apply our monocular depth boosting to your own network!

MergeNet - Boost Your Own Depth Boost custom or edited monocular depth maps using MergeNet Input Original result After manual editing of base You can

Computational Photography Lab @ SFU 142 Dec 17, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

Frederick Wang 3 Apr 26, 2022
Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation".

PixelTransformer Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation". Project Page Installation Please insta

Shubham Tulsiani 24 Dec 17, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Introduction This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pyto

Artit 'Art' Wangperawong 5 Sep 29, 2021
A playable implementation of Fully Convolutional Networks with Keras.

keras-fcn A re-implementation of Fully Convolutional Networks with Keras Installation Dependencies keras tensorflow Install with pip $ pip install git

JihongJu 202 Sep 07, 2022