Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

Related tags

Deep Learningcorda
Overview

CorDA

Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation alt text

Prerequisite

Please create and activate the following conda envrionment

# It may take several minutes for conda to solve the environment
conda env create -f environment.yml
conda activate corda 

Code was tested on a V100 with 16G Memory.

Train a CorDA model

# Train for the SYNTHIA2Cityscapes task
bash run_synthia_stereo.sh
# Train for the GTA2Cityscapes task
bash run_gta.sh

Test the trained model

bash shells/eval_syn2city.sh
bash shells/eval_gta2city.sh

Pre-trained models are provided (Google Drive). Please put them in ./checkpoint.

  • The provided SYNTHIA2Cityscapes model achieves 56.3 mIoU (16 classes) at the end of the training.
  • The provided GTA2Cityscapes model achieves 57.7 mIoU (19 classes) at the end of the training.

Reported Results on SYNTHIA2Cityscapes

Method mIoU*(13) mIoU(16)
CBST 48.9 42.6
FDA 52.5 -
DADA 49.8 42.6
DACS 54.8 48.3
CorDA 62.8 55.0

Citation

Please cite our work if you find it useful.

@article{wang2021domain,
  title={Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation},
  author={Wang, Qin and Dai, Dengxin and Hoyer, Lukas and Fink, Olga and Van Gool, Luc},
  journal={arXiv preprint arXiv:2104.13613},
  year={2021}
}

Acknowledgement

  • DACS is used as our codebase and our DA baseline official
  • SFSU as the source of stereo Cityscapes depth estimation Official

Data links

For questions regarding the code, please contact [email protected] .

Comments
  • Training on a custom dataset without ground truth label

    Training on a custom dataset without ground truth label

    From what I understand after reading your paper, you do not need ground truth label data on the target domain to train the pseudo labels. However, when I look at cityscapes_loader, it seems I need to supply the ground truth seg maps as well.

    I am trying to train the network on a custom dataset (that only depth maps, and ground truth seg map only on the source domain), but it looks I cannot get away without providing it. Do you have any thoughts on this?

    opened by chophilip21 6
  • Coufusion about the 'depth' of cityscapes

    Coufusion about the 'depth' of cityscapes

    Hello, nice work but i meet some question.

    in 'data/cityscapes_loader.py' line 181-183:

    depth = cv2.imread(depth_path, flags=cv2.IMREAD_ANYDEPTH).astype(np.float32) / 256. + 1. if depth.shape != lbl.shape: depth = cv2.resize(depth, lbl.shape[::-1], interpolation=cv2.INTER_NEAREST) Monocular depth: in disparity form 0 - 65535

    (1) Why the depth is calculated from x/256+1
    (2) is it the depth or the disparity ? In the official doc of cityscapes, it say disparity = (x-1)/256

    Thank you!

    opened by ganyz 6
  • gta2city

    gta2city

    When I revisited the performance of your GTA2City, I found that the MIOU could only reach about 54.8 after 250,000 iterations. I didn't change anything except the 10.2 version of CUDA. Could you please provide the training log of your GTA2City? Thanks a lot!!

    opened by xiaoachen98 6
  • Question about the pretrained parameters of backbone

    Question about the pretrained parameters of backbone

    Thanks for sharing the code, and it brings the amazing improvement for this filed.

    I notice that you have used backbone with parameters pretrained on MSCOCO which is the same with DACS, and have you tried backbone pretrained on ImageNet? If yes, could you please provide the corresponding results?

    opened by super233 4
  • About intrinsics used in GTA depth estimation

    About intrinsics used in GTA depth estimation

    Thanks a lot for your fantastic work. When I followed your depth estimation mentioned in issue#7, I went to the https://playing-for-benchmarks.org. However,its camera calibration doesn't include intrinsic matrix directly, which is needed in Monodepth2 depth estimation. Would you kindly share the intrinsic of GTA you used in depth estimation? Or may I know a way to convert GTA's projection matrix to intrinsic matrix?

    opened by Ichinose0code 2
  • Why does the class Train have 0 mIoU, What may could happen

    Why does the class Train have 0 mIoU, What may could happen

    I download your pretrained model, and start demo But I find train iou 0.0

    (yy_corda) [email protected]:/media/ailab/data/yy/corda$ bash shells/eval_gta2city.sh
    ./checkpoint/gta
    Found 500 val images
    Evaluating, found 500 batches.
    100 processed
    200 processed
    300 processed
    400 processed
    500 processed
    class  0 road         IU 94.81
    class  1 sidewalk     IU 62.18
    class  2 building     IU 88.03
    class  3 wall         IU 33.09
    class  4 fence        IU 43.51
    class  5 pole         IU 39.93
    class  6 traffic_light IU 49.46
    class  7 traffic_sign IU 54.68
    class  8 vegetation   IU 88.01
    class  9 terrain      IU 47.67
    class 10 sky          IU 89.22
    class 11 person       IU 68.22
    class 12 rider        IU 39.21
    class 13 car          IU 90.25
    class 14 truck        IU 51.43
    class 15 bus          IU 58.37
    class 16 train        IU 0.00
    class 17 motorcycle   IU 40.38
    class 18 bicycle      IU 57.42
    meanIOU: 0.5767768805758403
    

    I train my model on it, and test eval_syn2city.py. Here are 3 classes Iou 0.0 because missing classed in source domain. but I download pretrained model ,and run eval_gta2city.sh still miss one class train. So, I want to know why. Is it may train class didn't appear city datasets? So it's IOU is 0.

    opened by yuheyuan 2
  • How to obtain your depth datasets?

    How to obtain your depth datasets?

    Hi, thanks for your great work!

    It would be great if you can elaborate more on how you obtain the monocular depth estimation.

    I understand that you've uploaded the dataset, but it would be really helpful if I know exactly how you've done it.

    From your paper, in the ablation study part: "We would like to highlight that for both stereo and monocular depth estimations, only stereo pairs or image sequences from the same dataset are used to train and generate the pseudo depth estimation model. As no data from external datasets is used, and stereo pairs and image sequences are relatively easy to obtain, our proposal of using self-supervised depth have the potential to be effectively realized in real-world applications."

    So I image you get your monocular depth pseudo ground truth by:

    1. Downloading target domain videos (here Cityscapes. Btw, where do you get Cityscapes videos?)
    2. Train a Monodepth2 model on those videos (for how long?)
    3. Use the model to get pseudo ground truth Then repeat to the source domain (GTA 5 or Synthia)

    Am I getting it right? And is there any more important points you want to highlight when calculating such depth labels?

    Regards, Tu

    opened by tudragon154203 2
  • How to continue train?

    How to continue train?

    when I use script llike

    CUDA_VISIBLE_DEVICES=0 python3 -u trainUDA_gta.py --config ./configs/configUDA_gta2city.json --name UDA-gta --resume /saved/DeepLabv2-depth-gtamono-cityscapestereo/05-03_02-13-UDA-gta/checkpoint-iter95000.pth | tee ./gta-corda.log

    It would run again but the new checkpoint would be saved.

    opened by ygjwd12345 2
  • Warning:optimizer contains a parameter group with duplicate parameters

    Warning:optimizer contains a parameter group with duplicate parameters

    I follow you code, and train a model. But it results may not meet the need.

    I eval the model you share .

    bash shells/eval_syn2city.sh
    

    your share model. in syn2city : 19 classes : meanIout: 0.4771 I train the model: in syn2city : 19 classes : meanIout: only: 0.46.7

    in the train. I find the warning, So I want to know if it may cause the result drop.

    /home/ailab/anaconda3/envs/yy_CORDA/lib/python3.7/site-packages/torch/optim/sgd.py:68: UserWarning: optimizer contains a parameter group with duplicate parameters; in future, this will cause an error; see github.com/pytorch/pytorch/issues/40967 for more information
      super(SGD, self).__init__(params, defaults)
    D_init tensor(134.8489, device='cuda:0', grad_fn=<DivBackward0>) D tensor(134.5171, device='cuda:0', grad_fn=<DivBackward0>)
    
    opened by yuheyuan 1
  • May deeplabv2_synthia.py have extra space symbol

    May deeplabv2_synthia.py have extra space symbol

    if the forward code, return out ,an extra space symbol

       def forward(self, x):
            out = self.conv2d_list[0](x)
            for i in range(len(self.conv2d_list)-1):
                out += self.conv2d_list[i+1](x)
                return out
    

    this is the code in your code

    class Classifier_Module(nn.Module):
    
        def __init__(self, dilation_series, padding_series, num_classes):
            super(Classifier_Module, self).__init__()
            self.conv2d_list = nn.ModuleList()
            for dilation, padding in zip(dilation_series, padding_series):
                self.conv2d_list.append(nn.Conv2d(256, num_classes, kernel_size=3, stride=1, padding=padding, dilation=dilation, bias = True))
    
            for m in self.conv2d_list:
                m.weight.data.normal_(0, 0.01)
    
        def forward(self, x):
            out = self.conv2d_list[0](x)
            for i in range(len(self.conv2d_list)-1):
                out += self.conv2d_list[i+1](x)
                return out
    
    

    I this this forward is possible.beaceuse your code, use list contain four elements,if return out have space, this may do only twice without fourth

       def forward(self, x):
            out = self.conv2d_list[0](x)
            for i in range(len(self.conv2d_list)-1):
                out += self.conv2d_list[i+1](x)
            return out
    
       self.__make_pred_layer(Classifier_Module,[6,12,18,24],[6, 12,18, 24],NUM_OUTPUT[task]
    
       def _make_pred_layer(self,block, dilation_series, padding_series,num_classes):
            return block(dilation_series,padding_series,num_classes)
    
    opened by yuheyuan 1
  • checkpoints links fail

    checkpoints links fail

    I can't download the checkpoints file from your links, when click into the google drive, The file size is shown to be 2GB, but it was only 0B when downloaded

    opened by xiaoachen98 0
Owner
Qin Wang
PhD student @ ETH Zürich
Qin Wang
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
Code for the paper "Learning-Augmented Algorithms for Online Steiner Tree"

Learning-Augmented Algorithms for Online Steiner Tree This is the code for the paper "Learning-Augmented Algorithms for Online Steiner Tree". Requirem

0 Dec 09, 2021
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape

Eliahu Horwitz 393 Dec 22, 2022
This is an official implementation for "Video Swin Transformers".

Video Swin Transformer By Ze Liu*, Jia Ning*, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin and Han Hu. This repo is the official implementation of "V

Swin Transformer 981 Jan 03, 2023
Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed model training.

English | 简体中文 Easy Parallel Library Overview Easy Parallel Library (EPL) is a general and efficient library for distributed model training. Usability

Alibaba 185 Dec 21, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022
Official repository of my book: "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide"

This is the official repository of my book "Deep Learning with PyTorch Step-by-Step". Here you will find one Jupyter notebook for every chapter in the book.

Daniel Voigt Godoy 340 Jan 01, 2023
Solve a Rubiks Cube using Python Opencv and Kociemba module

Rubiks_Cube_Solver Solve a Rubiks Cube using Python Opencv and Kociemba module Main Steps Get the countours of the cube check whether there are tota

Adarsh Badagala 176 Jan 01, 2023
Keras like implementation of Deep Learning architectures from scratch using numpy.

Mini-Keras Keras like implementation of Deep Learning architectures from scratch using numpy. How to contribute? The project contains implementations

MANU S PILLAI 5 Oct 10, 2021
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
Object Detection using YOLO from PyImageSearch

Object Detection using YOLO from PyImageSearch By applying object detection, you’ll not only be able to determine what is in an image, but also where

Mohamed NIANG 1 Feb 09, 2022
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"

CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation

106 Jan 04, 2023