Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Overview

Winning submission to the 2021 Brain Tumor Segmentation Challenge

This repo contains the codes and pretrained weights for the winning submission to the 2021 Brain Tumor Segmentation Challenge by KAIST MRI Lab Team. The code was developed on top of the excellent nnUNet library. Please refer to the original repo for the installation, usages, and common Q&A

Inference with docker image

You can run the inference with the docker image that we submitted to the competition by following these instructions:

  1. Install docker-ce and nvidia-container-toolkit (instruction)
  2. Pull the docker image from here
  3. Gather the data you want to infer on in one folder. The naming of the file should follow the convention: BraTS2021_ID_<contrast>.nii.gz with contrast being flair, t1, t1ce, t2
  4. Run the command: docker run -it --rm --gpus device=0 --name nnunet -v "/your/input/folder/":"/input" -v "/your/output/folder/":"/output" rixez/brats21nnunet , replacing /your/input/folder and /your/output/folder with the absolute paths to your input and output folder.
  5. You can find the prediction results in the specified output folder.

The docker container was built and verified with Pytorch 1.9.1, Cuda 11.4 and a RTX3090. It takes about 4GB of GPU memory for inference with the docker container. The provided docker image might not work with different hardwares or cuda version. In that case, you can try running the models from the command line.

Inference with command line

If you want to run the model without docker, first, download the models from here. Extract the files and put the models in the RESULTS_FOLDER that you set up with nnUNet. Then run the following commands:

nnUNet_predict -i <input_folder> -o <output_folder1> -t <TASK_ID> -m 3d_fullres -tr nnUNetTrainerV2BraTSRegions_DA4_BN_BD --save_npz
nnUNet_predict -i <input_folder> -o <output_folder2> -t <TASK_ID> -m 3d_fullres -tr nnUNetTrainerV2BraTSRegions_DA4_BN_BD_largeUnet_Groupnorm --save_npz
nnUNet_ensemble -f <output_folder1> <output_folder2> -o <final_output_folder>

You need to specify the options in <>. TASK_ID is 500 for the pretrained weights but you can change it depending on the task ID that you set with your installation of nnUNet. To get the results that we submitted, you need to additionally apply post-processing threshold for of 200 and convert the label back to BraTS convention. You can check this file as an example.

Training with the model

You can train the models that we used for the competition using the command:

nnUNet_train 3d_fullres nnUNetTrainerV2BraTSRegions_DA4_BN_BD <TASK_ID> <FOLD> --npz # BL config
nnUNet_train 3d_fullres nnUNetTrainerV2BraTSRegions_DA4_BN_BD_largeUnet_Groupnorm <TASK_ID> <FOLD> --npz # BL + L + GN config
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri

Karl Hajjar 0 Nov 02, 2021
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023
PECOS - Prediction for Enormous and Correlated Spaces

PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i

Amazon 387 Jan 04, 2023
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.

Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur

Nicklas Hansen 101 Nov 01, 2022
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging Minimal implementation and experiments of "No-Transaction Band N

19 Jan 03, 2023
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021)

Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021) This repository is for the following paper: "Investigating Attention

52 Nov 19, 2022
pix2pix in tensorflow.js

pix2pix in tensorflow.js This repo is moved to https://github.com/yining1023/pix2pix_tensorflowjs_lite See a live demo here: https://yining1023.github

Yining Shi 47 Oct 04, 2022
Your interactive network visualizing dashboard

Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin

Mohit 177 Jan 04, 2023
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
Course materials for Fall 2021 "CIS6930 Topics in Computing for Data Science" at New College of Florida

Fall 2021 CIS6930 Topics in Computing for Data Science This repository hosts course materials used for a 13-week course "CIS6930 Topics in Computing f

Yoshi Suhara 101 Nov 30, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)

MLCR This is the source code for paper Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition. Xuesong Niu, Hu Han, Shiguang

Edson-Niu 60 Nov 29, 2022