[EMNLP 2021] Improving and Simplifying Pattern Exploiting Training

Related tags

Computer VisionADAPET
Overview

ADAPET

This repository contains the official code for the paper: "Improving and Simplifying Pattern Exploiting Training".

The model improves and simplifies PET with a decoupled label objective and label-conditioned MLM objective.

Model

                       Decoupled Label Loss                                                Label Conditioned Masked Language Modelling

Updates

  • [November 2021] You can run ADAPET on your own dataset now! See instructions here

Setup

Setup environment by running source bin/init.sh. This will

  • Download the FewGLUE and SuperGLUE datasets in data/fewglue/{task} and data/superglue/{task} respectively.
  • Install and setup environment with correct dependencies.

Training

First, create a config JSON file with the necessary hyperparameters. For reference, please see config/BoolQ.json.

Then, to train the model, run the following commands:

sh bin/setup.sh
sh bin/train.sh {config_file}

The output will be in the experiment directory exp_out/fewglue/{task_name}/albert-xxlarge-v2/{timestamp}/. Once the model has been trained, the following files can be found in the directory:

exp_out/fewglue/{task_name}/albert-xxlarge-v2/{timestamp}/
    |
    |__ best_model.pt
    |__ dev_scores.json
    |__ config.json
    |__ dev_logits.npy
    |__ src

To aid reproducibility, we provide the JSON files to replicate the paper's results at config/{task_name}.json.

Evaluation

To evaluate the model on the SuperGLUE dev set, run the following command:

sh bin/dev.sh exp_out/fewglue/{task_name}/albert-xxlarge-v2/{timestamp}/

The dev scores can be found in exp_out/fewglue/{task_name}/albert-xxlarge-v2/{timestamp}/dev_scores.json.

To evaluate the model on the SuperGLUE test set, run the following command.

sh bin/test.sh exp_out/fewglue/{task_name}/albert-xxlarge-v2/{timestamp}/

The generated predictions can be found in exp_out/fewglue/{task_name}/albert-xxlarge-v2/{timestamp}/test.json.

Train your own ADAPET

  • Setup your dataset in the data folder as
data/{dataset_name}/
    |
    |__ train.jsonl
    |__ val.jsonl
    |__ test.jsonl

Each jsonl file consists of lines of dictionaries. Each dictionaries should have the following format:

{
    "TEXT1": (insert text), 
    "TEXT2": (insert text), 
    "TEXT3": (insert text), 
    ..., 
    "TEXTN": (insert text), 
    "LBL": (insert label)
}
  • Run the experiment
python cli.py --data_dir data/{dataset_name} \
              --pattern '(INSERT PATTERN)' \
              --dict_verbalizer '{"lbl_1": "verbalizer_1", "lbl_2": "verbalizer_2"}'

Here, INSERT PATTERN consists of [TEXT1], [TEXT2], [TEXT3], ..., [LBL]. For example, if the new dataset had two text inputs and one label, a sample pattern would be [TEXT1] and [TEXT2] imply [LBL].

Fine-tuned Models

Our fine-tuned models can be found in this link.

To evaluate these fine-tuned models for different tasks, run the following command:

python src/run_pretrained.py -m {finetuned_model_dir}/{task_name} -c config/{task_name}.json -k pattern={best_pattern_for_task}

The scores can be found in exp_out/fewglue/{task_name}/albert-xxlarge-v2/{timestamp}/dev_scores.json. Note: The best_pattern_for_task can be found in Table 4 of the paper.

Contact

For any doubts or questions regarding the work, please contact Derek ([email protected]) or Rakesh ([email protected]). For any bug or issues with the code, feel free to open a GitHub issue or pull request.

Citation

Please cite us if ADAPET is useful in your work:

@inproceedings{tam2021improving,
          title={Improving and Simplifying Pattern Exploiting Training},
          author={Tam, Derek and Menon, Rakesh R and Bansal, Mohit and Srivastava, Shashank and Raffel, Colin},
          journal={Empirical Methods in Natural Language Processing (EMNLP)},
          year={2021}
}
Owner
Rakesh R Menon
Rakesh R Menon
This is a passport scanning web service to help you scan, identify and validate your passport created with a simple and flexible design and ready to be integrated right into your system!

Passport-Recogniton-System This is a passport scanning web service to help you scan, identify and validate your passport created with a simple and fle

Mo'men Ashraf Muhamed 7 Jan 04, 2023
Smart computer vision application

Smart-computer-vision-application Backend : opencv and python Library required:

2 Jan 31, 2022
Scene text detection and recognition based on Extremal Region(ER)

Scene text recognition A real-time scene text recognition algorithm. Our system is able to recognize text in unconstrain background. This algorithm is

HSIEH, YI CHIA 155 Dec 06, 2022
ARU-Net - Deep Learning Chinese Word Segment

ARU-Net: A Neural Pixel Labeler for Layout Analysis of Historical Documents Contents Introduction Installation Demo Training Introduction This is the

128 Sep 12, 2022
The virtual calculator will be above the live streaming from your camera

The virtual calculator is above the live streaming from my camera usb , the program first detect my hand and in each frame calculate the distance between two finger ,if the distance is lower than the

gasbaoui mohammed al amine 5 Jul 01, 2022
The Open Source Framework for Machine Vision

SimpleCV Quick Links: About Installation [Docker] (#docker) Ubuntu Virtual Environment Arch Linux Fedora MacOS Windows Raspberry Pi SimpleCV Shell Vid

Sight Machine 2.6k Dec 31, 2022
Implement 'Single Shot Text Detector with Regional Attention, ICCV 2017 Spotlight'

SSTDNet Implement 'Single Shot Text Detector with Regional Attention, ICCV 2017 Spotlight' using pytorch. This code is work for general object detecti

HotaekHan 84 Jan 05, 2022
Learn computer graphics by writing GPU shaders!

This repo contains a selection of projects designed to help you learn the basics of computer graphics. We'll be writing shaders to render interactive two-dimensional and three-dimensional scenes.

Eric Zhang 1.9k Jan 02, 2023
Run tesseract with the tesserocr bindings with @OCR-D's interfaces

ocrd_tesserocr Crop, deskew, segment into regions / tables / lines / words, or recognize with tesserocr Introduction This package offers OCR-D complia

OCR-D 38 Oct 14, 2022
Write-ups for the SwissHackingChallenge2021 CTF.

SwissHackingChallenge 2021 : Write-ups This repository contains a collection of my write-ups for challenges solved during the SwissHackingChallenge (S

Julien Béguin 3 Jun 07, 2021
OCR, Object Detection, Number Plate, Real Time

README.md PrePareded anaconda env requirements.txt clova AI → deep text recognition → trained weights (ex, .pth) wpod-net weights (ex, .h5 , .json) ht

Kaven Lee 7 Dec 06, 2022
A document scanner application for laptops/desktops developed using python, Tkinter and OpenCV.

DcoumentScanner A document scanner application for laptops/desktops developed using python, Tkinter and OpenCV. Directly install the .exe file to inst

Harsh Vardhan Singh 1 Oct 29, 2021
SceneCollisionNet This repo contains the code for "Object Rearrangement Using Learned Implicit Collision Functions", an ICRA 2021 paper. For more info

SceneCollisionNet This repo contains the code for "Object Rearrangement Using Learned Implicit Collision Functions", an ICRA 2021 paper. For more info

NVIDIA Research Projects 31 Nov 22, 2022
The official code for the ICCV-2021 paper "Speech Drives Templates: Co-Speech Gesture Synthesis with Learned Templates".

SpeechDrivesTemplates The official repo for the ICCV-2021 paper "Speech Drives Templates: Co-Speech Gesture Synthesis with Learned Templates". [arxiv

Qian Shenhan 53 Dec 23, 2022
This repository provides train&test code, dataset, det.&rec. annotation, evaluation script, annotation tool, and ranking.

SCUT-CTW1500 Datasets We have updated annotations for both train and test set. Train: 1000 images [images][annos] Additional point annotation for each

Yuliang Liu 600 Dec 18, 2022
Apply different text recognition services to images of handwritten documents.

Handprint The Handwritten Page Recognition Test is a command-line program that invokes HTR (handwritten text recognition) services on images of docume

Caltech Library 117 Jan 02, 2023
Character Segmentation using TensorFlow

Character Segmentation Segment characters and spaces in one text line,from this paper Chinese English mixed Character Segmentation as Semantic Segment

26 Aug 25, 2022
A tool combining EasyOCR and LaMa to automatically detect text and replace it with an inpainted background.

EasyLaMa (WIP) This is a tool combining EasyOCR and LaMa to automatically detect text and replace it with an inpainted background. Installation For GP

3 Sep 17, 2022
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval (arXiv) Repository to contain the code, models, data for end-to-end

225 Dec 25, 2022