Texture mapping with variational auto-encoders

Overview

vae-textures

This is an experiment with using variational autoencoders (VAEs) to perform mesh parameterization. This was also my first project using JAX and Flax, and I found them both quite intuitive and easy to use.

To get straight to the results, check out the Results section. The Background section describes the goals of this project in a bit more detail.

Background

In geometry processing, mesh parameterization allows high-resolution details of a 3D object, such as color and material variations, to be stored in a highly-optimized 2D image format. The strategy is to map each vertex of the 3D model's mesh to a unique 2D location in the plane, with the constraint that nearby points in 3D are also nearby in 2D. In general, we want this mapping to distort the geometry of the surface as little as possible, so for example large features on the 3D surface get a lot of pixels in the 2D image.

This might ring a bell to those familiar with machine learning. In ML, mapping a higher-dimensional space to a lower-dimensional space is called "embedding" and is often performed to aid in visualization or to remove extraneous information. VAEs are one technique in ML for mapping a high-dimensional space to a well-behaved latent space, and have the desirable property that probability densities are (approximately) preserved between the two spaces.

Given the above observations, here is how we can use VAEs for mesh parameterization:

  1. For a given 3D model, create a "surface dataset" with random points on the surface and their respective normals.
  2. Train a VAE to generate points on the surface using a 2D Gaussian latent space.
  3. Use the gaussian CDF to convert the above latents to the uniform distribution, so that "probability preservation" becomes "area preservation".
  4. Apply the 3D -> 2D mapping from the VAE encoder + gaussian CDF to map the vertices of the original mesh to the unit square.
  5. Render the resulting model with some test 2D texture image acting as the unit square.

The above process sounds pretty solid, but there are some quirks to getting it to work. Coming into this project, I predicted two possible reasons it would fail. It turns out that number 2 isn't that big of an issue (an extra orthogonality loss helps a lot), and there was a third issue I didn't think of (described in the Results section).

  1. Some triangles will be messed up because of cuts/seams. In particular, the VAE will have to "cut up" the surface to place it into the latent space, and we won't know exactly where these cuts are when mapping texture coordinates to triangle vertices. As a result, a few triangles must have points which are very far away in latent space.
  2. It will be difficult to force the mapping to be conformal. The VAE objective will mostly attempt to preserve areas (i.e. density), and ideally we care about conformality as well.

Results

This was my first time using JAX. Nevertheless, I was able to get interesting results right out of the gate. I ran most of my experiments on a torus 3D model, but I have since verified that it works for more complex models as well.

Initially, I trained VAEs with a Gaussian decoder loss. I also played around with an orthogonality bonus based on the eigenvalues of the Jacobian of the encoder. This resulted in texture mappings like this one:

Torus with orthogonality bonus and Gaussian loss

The above picture looks like a clean mapping, but it isn't actually bijective. To see why, let's sample from this VAE. If everything works as expected, we should get points on the surface of the torus. For this "sampling", I'll use the mean prediction from the decoder (even though its output is a Gaussian distribution) since we really just want a deterministic mapping:

A flat disk with a hole in the middle

It might be hard to tell from a single rendering, but this is just a flat disk with a low-density hole in the middle. In particular, the VAE isn't encoding the z axis at all, but rather just the x and y axes. The resulting texture map looks smooth, but every point in the texture is reused on each side of the torus, so the mapping is not bijective.

I discovered that this caused by the Gaussian likelihood loss on the decoder. It is possible for the model to reduce this loss arbitrarily by shrinking the standard deviations of the x and y axes, so there is little incentive to actually capture every axis accurately.

To achieve better results, we can drop the Gaussian likelihood loss and instead use pure MSE for the decoder. This isn't very well-principled, and we now have to select a reasonable coefficient for the KL term of the VAE to balance the reconstruction accuracy with the quality of the latent distribution. I found good hyperparameters for the torus, but these will likely require tuning for other models.

With the better reconstruction loss function, sampling the VAE gives the expected point cloud:

The surface of a torus, point cloud

The mappings we get don't necessarily seem angle-preserving, though:

A tiled grid mapped onto a torus

To preserve angles, we can add an orthogonality bonus to the loss. When we try to make the map preserve angles, we might make it less area preserving, as can be seen here:

A tiled grid mapped onto a torus which attempts to preserve angles

Also note from the last two images that there are seams along which the texture looks totally messed up. This is because the surface cannot be flattened to a plane without some cuts, along which the VAE encoder has to "jump" from one point on the 2D plane to another. This was one of my predicted shortcomings of the method.

Running

First, install the package with

pip install -e .

Training

My initial VAE experiments were run like so, via scripts/train_vae.py:

python scripts/train_vae.py --ortho-coeff 0.002 --num-iters 20000 models/torus.stl

This will save a model checkpoint to vae.pkl after 20000 iterations, which only takes a minute or two on a laptop CPU.

The above will train a VAE with Gaussian reconstruction loss, which may not learn a good bijective map (as shown above). To instead use the MSE decoder loss, try:

python scripts/train_vae.py --recon-loss-fn mse --kl-coeff 0.001 --batch-size 1024 --num-iters 20000 models/torus.stl

I also found a better orthogonality loss function. To get reasonable mappings that attempt to preserve angles, add --ortho-coeff 0.01 --ortho-loss-fn rel.

Using the VAE

Once you have trained a VAE, you can export a 3D model with the resulting texture mapping like so:

python scripts/map_vae.py models/torus.stl outputs/mapped_output.obj

Note that the resulting .obj file references a material.mtl file which should be in the same directory. I already include such a file with a checkerboard texture in outputs/material.mtl.

You can also sample a point cloud from the VAE using point_cloud_gen.py:

python scripts/point_cloud_gen.py outputs/point_cloud.obj

Finally, you can produce a texture image such that the pixel at point (x, y) is an RGB-encoded, normalized (x, y, z) coordinate from decoder(x, y).

python scripts/inv_map_vae.py models/torus.stl outputs/rgb_texture.png
Owner
Alex Nichol
Web developer, math geek, and AI enthusiast.
Alex Nichol
Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation Source code for TACL 2021 paper KEPLER: A Unified Model for Kn

THU-KEG 138 Dec 22, 2022
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Collyn O'Kane 37 Dec 22, 2022
Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI)

Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI) Preparation Clone the Synchronized-BatchNorm-P

Fangneng Zhan 12 Aug 10, 2022
Using PyTorch Perform intent classification using three different models to see which one is better for this task

Using PyTorch Perform intent classification using three different models to see which one is better for this task

Yoel Graumann 1 Feb 14, 2022
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Using Unreliable Pseudo Labels Official PyTorch implementation of Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels, CVPR 2022. Ple

Haochen Wang 268 Dec 24, 2022
(AAAI 2021) Progressive One-shot Human Parsing

End-to-end One-shot Human Parsing This is the official repository for our two papers: Progressive One-shot Human Parsing (AAAI 2021) End-to-end One-sh

54 Dec 30, 2022
Python version of the amazing Reaction Mechanism Generator (RMG).

Reaction Mechanism Generator (RMG) Description This repository contains the Python version of Reaction Mechanism Generator (RMG), a tool for automatic

Reaction Mechanism Generator 284 Dec 27, 2022
DL & CV-based indicator toolset for the vehicle drivers via live dash-cam footage.

Vehicle Indicator Toolset Deep Learning and Computer Vision based indicator toolset for vehicle drivers using live dash-cam footages. Tracking of vehi

Alex Xu 12 Dec 28, 2021
Generative Adversarial Text to Image Synthesis

Text To Image Synthesis This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the pa

Hao 575 Jan 08, 2023
Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

Dongkwan Kim 127 Dec 28, 2022
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
Spatiotemporal resampling methods for mlr3

mlr3spatiotempcv Package website: release | dev Spatiotemporal resampling methods for mlr3. This package extends the mlr3 package framework with spati

45 Nov 21, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
The King is Naked: on the Notion of Robustness for Natural Language Processing

the-king-is-naked: on the notion of robustness for natural language processing AAAI2022 DISCLAIMER:This repo will be updated soon with instructions on

Iperboreo_ 1 Nov 24, 2022
High accurate tool for automatic faces detection with landmarks

faces_detanator High accurate tool for automatic faces detection with landmarks. The library is based on public detectors with high accuracy (TinaFace

Ihar 7 May 10, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in

Shengcai Liao 166 Dec 28, 2022