Pytorch implementation for "Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets" (ECCV 2020 Spotlight)

Overview

Distribution-Balanced Loss

[Paper]

The implementation of our paper Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets (ECCV2020 Spotlight).

Tong WuQingqiu HuangZiwei LiuYu WangDahua Lin

Requirements

Installation

git clone [email protected]:wutong16/DistributionBalancedLoss.git
cd DistributionBalancedLoss

Quick start

Training

COCO-MLT

python tools/train.py configs/coco/LT_resnet50_pfc_DB.py 

VOC-MLT

python tools/train.py configs/voc/LT_resnet50_pfc_DB.py 

Testing

COCO-MLT

bash tools/dist_test.sh configs/coco/LT_resnet50_pfc_DB.py work_dirs/LT_coco_resnet50_pfc_DB/epoch_8.pth 1

VOC-MLT

bash tools/dist_test.sh configs/voc/LT_resnet50_pfc_DB.py work_dirs/LT_voc_resnet50_pfc_DB/epoch_8.pth 1

Pre-trained models

COCO-MLT

Backbone Total Head Medium Tail Download
ResNet-50 53.55 51.13 57.05 51.06 model

VOC-MLT

Backbone Total Head Medium Tail Download
ResNet-50 78.94 73.22 84.18 79.30 model

Datasets

Use our dataset

The long-tail multi-label datasets we use in the paper are created from MS COCO 2017 and Pascal VOC 2012. Annotations and statistics data resuired when training are saved under ./appendix in this repo.

appendix
  |--coco
    |--longtail2017
      |--class_freq.pkl
      |--class_split.pkl
      |--img_id.pkl
  |--VOCdevkit
    |--longtail2012
      |--class_freq.pkl
      |--class_split.pkl
      |--img_id.pkl

Try your own

You can also create a new long-tailed dataset by downloading the annotations, terse_gt_2017.pkl for COCO and terse_gt_2012.pkl for VOC, from here and move them into the right folders as below.

appendix
  |--coco
    |--longtail2017
      |--terse_gt_2017.pkl
  |--VOCdevkit
    |--longtail2012
      |--terse_gt_2012.pkl

Then run the following command, adjust the parameters as you like to control the distribution.

python tools/create_longtail_dataset.py

To update the corresponding class_freq.pkl files, please refer to def _save_info in .\mllt\datasets\custom.py.

License and Citation

The use of this software is RESTRICTED to non-commercial research and educational purposes.

@inproceedings{DistributionBalancedLoss,
  title={Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets},
  author={Wu, Tong and Huang, Qingqiu and Liu, Ziwei and Wang, Yu and Lin, Dahua},
  booktitle={European Conference on Computer Vision (ECCV)},
  year={2020}
}

TODO

  • Distributed training is not supported currently
  • Evaluation with single GPU is not supported currently
  • test pytorch 0.4.0

Contact

This repo is currently maintained by @wutong16 and @hqqasw

Owner
Tong WU
Tong WU
Pytorch Implementation for (STANet+ and STANet)

Pytorch Implementation for (STANet+ and STANet) V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:

GuotaoWang 14 Nov 29, 2022
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi

18 Oct 20, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
Tensorflow AffordanceNet and AffContext implementations

AffordanceNet and AffContext This is tensorflow AffordanceNet and AffContext implementations. Both are implemented and tested with tensorflow 2.3. The

Beatriz Pérez 6 Dec 01, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

This is the official repository of the paper: CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability A private copy of the

Fadi Boutros 33 Dec 31, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
SMD-Nets: Stereo Mixture Density Networks

SMD-Nets: Stereo Mixture Density Networks This repository contains a Pytorch implementation of "SMD-Nets: Stereo Mixture Density Networks" (CVPR 2021)

Fabio Tosi 115 Dec 26, 2022
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
A Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Training Data》

RangeLoss Pytorch This is a Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Trai

Youzhi Gu 7 Nov 27, 2021
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
No Code AI/ML platform

NoCodeAIML No Code AI/ML platform - Community Edition Video credits: Uday Kiran Typical No Code AI/ML Platform will have features like drag and drop,

Bhagvan Kommadi 5 Jan 28, 2022
PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility

PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility Jae Yong Lee, Joseph DeGol, Chuhang Zou, Derek Hoiem Installation To install nece

31 Apr 19, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
[ICLR'21] Counterfactual Generative Networks

This repository contains the code for the ICLR 2021 paper "Counterfactual Generative Networks" by Axel Sauer and Andreas Geiger. If you want to take the CGN for a spin and generate counterfactual ima

88 Jan 02, 2023
[arXiv22] Disentangled Representation Learning for Text-Video Retrieval

Disentangled Representation Learning for Text-Video Retrieval This is a PyTorch implementation of the paper Disentangled Representation Learning for T

Qiang Wang 49 Dec 18, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
Super Resolution for images using deep learning.

Neural Enhance Example #1 — Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens. As seen on TV! What if you could increase

Alex J. Champandard 11.7k Dec 29, 2022