Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

Overview

TopClus

The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022.

Requirements

At least one GPU is required to run the code.

Before running, you need to first install the required packages by typing following commands (Using a virtual environment is recommended):

pip3 install -r requirements.txt

You need to also download the following resources in NLTK:

import nltk
nltk.download('stopwords')
nltk.download('averaged_perceptron_tagger')
nltk.download('universal_tagset')

Overview

TopClus is an unsupervised topic discovery method that jointly models words, documents and topics in a latent spherical space derived from pretrained language model representations.

Running Topic Discovery

The entry script is src/trainer.py and the meanings of the command line arguments will be displayed upon typing

python src/trainer.py -h

The topic discovery results will be written to results_${dataset}.

We provide two example scripts nyt.sh and yelp.sh for running topic discovery on the New York Times and the Yelp Review corpora used in the paper, respectively. You need to first extract the text files from the .tar.gz tarball files under datasets/nyt and datasets/yelp.

You could expect to obtain results like the following (the Topic IDs are random):

On New York Times:
Topic 20: months,weeks,days,decades,years,hours,decade,seconds,moments,minutes
Topic 28: weapons,missiles,missile,nuclear,grenades,explosions,explosives,launcher,bombs,bombing
Topic 30: healthcare,medical,medicine,physicians,patients,health,hospitals,bandages,medication,physician
Topic 41: economic,commercially,economy,business,industrial,industry,market,consumer,trade,commerce
Topic 46: senate,senator,congressional,legislators,legislatures,ministry,legislature,minister,ministerial,parliament
Topic 72: government,administration,governments,administrations,mayor,gubernatorial,mayoral,mayors,public,governor
Topic 77: aircraft,airline,airplane,airlines,voyage,airplanes,aviation,planes,spacecraft,flights
Topic 88: baseman,outfielder,baseball,innings,pitchers,softball,inning,basketball,shortstop,pitcher
On Yelp Review:
Topic 1: steamed,roasted,fried,shredded,seasoned,sliced,frozen,baked,canned,glazed
Topic 15: nice,cozy,elegant,polite,charming,relaxing,enjoyable,pleasant,helpful,luxurious
Topic 16: spicy,fresh,creamy,stale,bland,salty,fluffy,greasy,moist,cold
Topic 17: flavor,texture,flavors,taste,quality,smells,tastes,flavour,scent,ingredients
Topic 20: japanese,german,australian,moroccan,russian,greece,italian,greek,asian,
Topic 40: drinks,beers,beer,wine,beverages,alcohol,beverage,vodka,champagne,wines
Topic 55: horrible,terrible,shitty,awful,dreadful,worst,worse,disgusting,filthy,rotten
Topic 75: strawberry,berry,onion,peppers,tomato,onions,potatoes,vegetable,mustard,garlic

Running Document Clustering

The latent document embeddings will be saved to results_${dataset}/latent_doc_emb.pt which can be used as features to clustering algorithms (e.g., K-Means).

If you have ground truth document labels, you could obtain the document clustering evaluation results by passing the document label file and the saved latent document embedding file to the cluster_eval function in src/utils.py. For example:

from src.utils import TopClusUtils
utils = TopClusUtils()
utils.cluster_eval(label_path="datasets/nyt/label_topic.txt", emb_path="results_nyt/latent_doc_emb.pt")

Running on New Datasets

To execute the code on a new dataset, you need to

  1. Create a directory named your_dataset under datasets.
  2. Prepare a text corpus texts.txt (one document per line) under your_dataset as the target corpus for topic discovery.
  3. Run src/trainer.py with appropriate command line arguments (the default values are usually good start points).

Citations

Please cite the following paper if you find the code helpful for your research.

@inproceedings{meng2022topic,
  title={Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations},
  author={Meng, Yu and Zhang, Yunyi and Huang, Jiaxin and Zhang, Yu and Han, Jiawei},
  booktitle={The Web Conference},
  year={2022},
}
Owner
Yu Meng
Ph.D. student, Text Mining
Yu Meng
BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation Installing The Dependencies $ conda create --name beametrics python

7 Jul 04, 2022
Automatic meme generation model using Tensorflow Keras.

Memefly You can find the project at MemeflyAI. Contributors Nick Buukhalter Harsh Desai Han Lee Project Overview Trello Board Product Canvas Automatic

BloomTech Labs 2 Jan 13, 2022
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
Corgis are the cutest creatures; have 30K of them!

corgi-net This is a dataset of corgi images scraped from the corgi subreddit. After filtering using an ImageNet classifier, the training set consists

Alex Nichol 6 Dec 24, 2022
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
Vector Quantized Diffusion Model for Text-to-Image Synthesis

Vector Quantized Diffusion Model for Text-to-Image Synthesis Due to company policy, I have to set microsoft/VQ-Diffusion to private for now, so I prov

Shuyang Gu 294 Jan 05, 2023
TensorFlow-based implementation of "Pyramid Scene Parsing Network".

PSPNet_tensorflow Important Code is fine for inference. However, the training code is just for reference and might be only used for fine-tuning. If yo

HsuanKung Yang 323 Dec 20, 2022
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
Xi Dongbo 78 Nov 29, 2022
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
This code is an unofficial implementation of HiFiSinger.

HiFiSinger This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers: Chen, J., Tan, X., Luan, J., Qin,

Heejo You 87 Dec 23, 2022
Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition - NeurIPS2021

Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition Project Page | Video | Paper Implementation for Neural-PIL. A novel method wh

Computergraphics (University of Tübingen) 64 Dec 29, 2022
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022
Ensemble Visual-Inertial Odometry (EnVIO)

Ensemble Visual-Inertial Odometry (EnVIO) Authors : Jae Hyung Jung, Yeongkwon Choe, and Chan Gook Park 1. Overview This is a ROS package of Ensemble V

Jae Hyung Jung 95 Jan 03, 2023
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023