An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Overview

Merel-MoCap-GAIL

An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data:

Learning human behaviors from motion capture by adversarial imitation
Josh Merel, Yuval Tassa, Dhruva TB, Sriram Srinivasan, Jay Lemmon, Ziyu Wang, Greg Wayne, Nicolas Heess
arXiv preprint arXiv:1707.02201, 2017

Acknowledgements

This code is based on an earlier version developed by Ruben Villegas.

Clone the Repository

This repo contains one submodule (baselines), so make sure you clone with --recursive:

git clone --recursive https://github.com/ywchao/merel-mocap-gail.git

Installation

Make sure the following are installed.

  • Our own branch of baselines provided as a submodule

    1. Change the directory:

      cd baselines
    2. Go through the installation steps in this README without re-cloning the repo.

  • An old verion of dm_control provided as a submodule

    1. Change the directory:

      cd dm_control
    2. Go through the installation steps in this README without re-cloning the repo. This requires the installation of MuJoCo. Also make sure to install the cloned verion:

      pip install .

    Note that we have only tested on this version. The code might work with newer versions but it is not guaranteed.

  • Matplotlib

Training and Visualization

  1. Download the CMU MoCap dataset:

    ./scripts/download_cmu_mocap.sh

    This will populate the data folder with cmu_mocap.

  2. Preprocess data. We use the walk sequences from subject 8 as described in the paper.

    ./scripts/data_collect.sh

    The output will be saved in data/cmu_mocap.npz.

  3. Visualize the processed MoCap sequences in dm_control:

    ./scripts/data_visualize.sh

    The output will be saved in data/cmu_mocap_vis.

  4. Start training:

    ./scripts/train.sh 0 1

    Note that:

    • The first argument sets the random seed, and the second argument sets the number of used sequences.
    • For now we use only sequence 1. We will show using all sequences in later steps.
    • The command will run training with random seed 0. In practice we recommend running multiple training jobs with different seeds in parallel, as the training outcome is often sensitive to the seed value.

    The output will be saved in output.

  5. Monitor training with TensorBoard:

    tensorboard --logdir=output --port=6006

    Below are the curves of episode length, rewards, and true rewards, obtained with four different random seeds:

  6. Visualize trained humanoid:

    ./scripts/visualize.sh \
      output/trpo_gail.obs_only.transition_limitation_1.humanoid_CMU_run.g_step_3.d_step_1.policy_entcoeff_0.adversary_entcoeff_0.001.seed_0.num_timesteps_5.00e+07/checkpoints/model.ckpt-30000 \
      output/trpo_gail.obs_only.transition_limitation_1.humanoid_CMU_run.g_step_3.d_step_1.policy_entcoeff_0.adversary_entcoeff_0.001.seed_0.num_timesteps_5.00e+07/vis_model.ckpt-30000.mp4 \
      0 \
      1

    The arguments are the model path, output video (mp4) file path, random seed, and number of used sequences.

    Below is a sample visualization:

  7. If you want to train with all sequences from subject 8. This can be done by replacing 1 by -1 in step 4:

    ./scripts/train.sh 0 -1

    Similarly, for visualization, replace 1 by -1 and update the paths:

    ./scripts/visualize.sh \
      output/trpo_gail.obs_only.transition_limitation_-1.humanoid_CMU_run.g_step_3.d_step_1.policy_entcoeff_0.adversary_entcoeff_0.001.seed_0.num_timesteps_5.00e+07/checkpoints/model.ckpt-50000 \
      output/trpo_gail.obs_only.transition_limitation_-1.humanoid_CMU_run.g_step_3.d_step_1.policy_entcoeff_0.adversary_entcoeff_0.001.seed_0.num_timesteps_5.00e+07/vis_model.ckpt-50000.mp4 \
      0 \
      -1

    Note that training takes longer to converge when using all sequences:

    A sample visualization:

Owner
Yu-Wei Chao
Yu-Wei Chao
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Benedek Rozemberczki 697 Dec 27, 2022
DECAF: Deep Extreme Classification with Label Features

DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain

46 Nov 06, 2022
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation

FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This

Kento Watanabe 48 Aug 30, 2022
Progressive Image Deraining Networks: A Better and Simpler Baseline

Progressive Image Deraining Networks: A Better and Simpler Baseline [arxiv] [pdf] [supp] Introduction This paper provides a better and simpler baselin

190 Dec 01, 2022
SPTAG: A library for fast approximate nearest neighbor search

SPTAG: A library for fast approximate nearest neighbor search SPTAG SPTAG (Space Partition Tree And Graph) is a library for large scale vector approxi

Microsoft 4.3k Jan 01, 2023
The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Joint t-sne This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets. abstract: We present Jo

IDEAS Lab 7 Dec 18, 2022
ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo

Prograf-UFF 5 Sep 28, 2022
Image Captioning using CNN and Transformers

Image-Captioning Keras/Tensorflow Image Captioning application using CNN and Transformer as encoder/decoder. In particulary, the architecture consists

24 Dec 28, 2022
Source code for the paper: Variance-Aware Machine Translation Test Sets (NeurIPS 2021 Datasets and Benchmarks Track)

Variance-Aware-MT-Test-Sets Variance-Aware Machine Translation Test Sets License See LICENSE. We follow the data licensing plan as the same as the WMT

NLP2CT Lab, University of Macau 5 Dec 21, 2021
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
PyTorch reimplementation of the paper Involution: Inverting the Inherence of Convolution for Visual Recognition [CVPR 2021].

Involution: Inverting the Inherence of Convolution for Visual Recognition Unofficial PyTorch reimplementation of the paper Involution: Inverting the I

Christoph Reich 100 Dec 01, 2022
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Kaggle Feedback Prize - Evaluating Student Writing 15th solution First of all, I would like to thank the excellent notebooks and discussions from http

Lingyuan Zhang 6 Mar 24, 2022
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 Jittor code will come soon

MenghaoGuo 357 Dec 11, 2022
Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNNs fruits360 Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class. CNN on a pretrained model Build a CNN on a pretrained model, Res

Ricky Chuang 1 Mar 07, 2022
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Martin Li 85 Dec 22, 2022