✂️ EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video.

Overview

EyeLipCropper

EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video. The whole process consists of three parts: frame extraction, face alignment, and eye/mouth cropping. The cropped eye/mouth image size can be customized.

vis

Usage

Prerequisites

>>> pip install -r requirements.txt

1. Extract frames of a given video

>>> python frame_extract.py -h
usage: frame_extract.py [-h] [--video-path VIDEO_PATH] [--images-path IMAGES_PATH]

extract frames with opencv

optional arguments:
  -h, --help            show this help message and exit
  --video-path VIDEO_PATH
                        the input video path
  --images-path IMAGES_PATH
                        the output frames path
 
# default for test: this will generate frames of the video in `./test/images`
>>> python frame_extract.py

2. Align faces of the frames, with library face-alignment

>>> python face_align.py -h
usage: face_align.py [-h] [--images-path IMAGES_PATH] [--landmarks-path LANDMARKS_PATH] [--boxes-path BOXES_PATH] [--device DEVICE] [--log-path LOG_PATH]

align faces with `https://github.com/1adrianb/face-alignment`

optional arguments:
  -h, --help            show this help message and exit
  --images-path IMAGES_PATH
                        the input frames path
  --landmarks-path LANDMARKS_PATH
                        the output 68 landmarks path
  --boxes-path BOXES_PATH
                        the output bounding boxes path
  --device DEVICE       cpu or gpu cuda device
  --log-path LOG_PATH   logging when there are no faces detected
  
# default for test: this will generate landmarks and bounding boxes in
# `./test/landmarks` and `./test/boxes`
>>> python face_align.py

3. Crop left eye, right eye, mouth ROIs, with code modified from processing tools of [Eye] RT-GENE and [Mouth] LipForensics

>>> python eye_mouth_crop.py -h
usage: eye_mouth_crop.py [-h] [--images-path IMAGES_PATH] [--landmarks-path LANDMARKS_PATH] [--boxes-path BOXES_PATH] [--eye-width EYE_WIDTH] [--eye-height EYE_HEIGHT]
                         [--face-roi-width FACE_ROI_WIDTH] [--face-roi-height FACE_ROI_HEIGHT] [--left-eye-path LEFT_EYE_PATH] [--right-eye-path RIGHT_EYE_PATH]
                         [--mean-face MEAN_FACE] [--mouth-width MOUTH_WIDTH] [--mouth-height MOUTH_HEIGHT] [--start-idx START_IDX] [--stop-idx STOP_IDX]
                         [--window-margin WINDOW_MARGIN] [--mouth-path MOUTH_PATH]

crop eye and mouth regions

optional arguments:
  -h, --help            show this help message and exit
  --images-path IMAGES_PATH
                        [COMMON] the input frames path
  --landmarks-path LANDMARKS_PATH
                        [COMMON] the input 68 landmarks path
  --boxes-path BOXES_PATH
                        [EYE] the input bounding boxes path
  --eye-width EYE_WIDTH
                        [EYE] width of cropped eye ROIs
  --eye-height EYE_HEIGHT
                        [EYE] height of cropped eye ROIs
  --face-roi-width FACE_ROI_WIDTH
                        [EYE] maximize this argument until there is a warning message
  --face-roi-height FACE_ROI_HEIGHT
                        [EYE] maximize this argument until there is a warning message
  --left-eye-path LEFT_EYE_PATH
                        [EYE] the output left eye images path
  --right-eye-path RIGHT_EYE_PATH
                        [EYE] the output right eye images path
  --mean-face MEAN_FACE
                        [MOUTH] mean face pathname
  --mouth-width MOUTH_WIDTH
                        [MOUTH] width of cropped mouth ROIs
  --mouth-height MOUTH_HEIGHT
                        [MOUTH] height of cropped mouth ROIs
  --start-idx START_IDX
                        [MOUTH] start of landmark index for mouth
  --stop-idx STOP_IDX   [MOUTH] end of landmark index for mouth
  --window-margin WINDOW_MARGIN
                        [MOUTH] window margin for smoothed_landmarks
  --mouth-path MOUTH_PATH
                        [MOUTH] the output mouth images path

# default for test: this will generate the final cropped left eye,
# right eye, and mouth images in `./test/left_eye`, `./test/right_eye`
# , and `./test/mouth`
>>> python eye_mouth_crop.py
  • Note that the argument --face-roi-width and --face-roi-height should be maximized until there is a printed warning.

License

GPL-3.0 License

Reference

[1] Bulat, Adrian, and Georgios Tzimiropoulos. "How far are we from solving the 2d & 3d face alignment problem?(and a dataset of 230,000 3d facial landmarks)." Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2017. GitHub: https://github.com/1adrianb/face-alignment

[2] Fischer, Tobias, Hyung Jin Chang, and Yiannis Demiris. "Rt-gene: Real-time eye gaze estimation in natural environments." Proceedings of the European Conference on Computer Vision (ECCV). 2018. GitHub: https://github.com/Tobias-Fischer/rt_gene

[3] Haliassos, Alexandros, et al. "Lips Don't Lie: A Generalisable and Robust Approach To Face Forgery Detection." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021. GitHub: https://github.com/ahaliassos/LipForensics/

Owner
Zi-Han Liu
Senior @ SJTU
Zi-Han Liu
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Kaggle Feedback Prize - Evaluating Student Writing 15th solution First of all, I would like to thank the excellent notebooks and discussions from http

Lingyuan Zhang 6 Mar 24, 2022
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022
This tutorial repository is to introduce the functionality of KGTK to first-time users

Welcome to the KGTK notebook tutorial The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledg

USC ISI I2 58 Dec 21, 2022
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation

InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of

Sangwoo Mo 827 Dec 29, 2022
Evaluating AlexNet features at various depths

Linear Separability Evaluation This repo provides the scripts to test a learned AlexNet's feature representation performance at the five different con

Yuki M. Asano 32 Dec 30, 2022
Repository containing detailed experiments related to the paper "Memotion Analysis through the Lens of Joint Embedding".

Memotion Analysis Through The Lens Of Joint Embedding This repository contains the experiments conducted as described in the paper 'Memotion Analysis

Nethra Gunti 1 Mar 16, 2022
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
Centroid-UNet is deep neural network model to detect centroids from satellite images.

Centroid UNet - Locating Object Centroids in Aerial/Serial Images Introduction Centroid-UNet is deep neural network model to detect centroids from Aer

GIC-AIT 19 Dec 08, 2022
A TensorFlow implementation of DeepMind's WaveNet paper

A TensorFlow implementation of DeepMind's WaveNet paper This is a TensorFlow implementation of the WaveNet generative neural network architecture for

Igor Babuschkin 5.3k Dec 28, 2022
Sparse-dense operators implementation for Paddle

Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel

北海若 3 Dec 17, 2022
It's like Shape Editor in Maya but works with skeletons (transforms).

Skeleposer What is Skeleposer? Briefly, it's like Shape Editor in Maya, but works with transforms and joints. It can be used to make complex facial ri

Alexander Zagoruyko 1 Nov 11, 2022
Computer Vision application in the web

Computer Vision application in the web Preview Usage Clone this repo git clone https://github.com/amineHY/WebApp-Computer-Vision-streamlit.git cd Web

Amine Hadj-Youcef. PhD 35 Dec 06, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks

This is an implementation of Volodymyr Mnih's dissertation methods on his Massachusetts road & building dataset and my original methods that are publi

Shunta Saito 255 Sep 07, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 218 Jan 05, 2023