Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Overview

Lottery Jackpots Exist in Pre-trained Models (Paper Link)

Requirements

  • Python >= 3.7.4
  • Pytorch >= 1.6.1
  • Torchvision >= 0.4.1

Reproduce the Experiment Results

  1. Download the pre-trained models from this link and place them in the pre-train folder.

  2. Select a configuration file in configs to reproduce the experiment results reported in the paper. For example, to find a lottery jackpot with 30 epochs for pruning 95% parameters of ResNet-32 on CIFAR-10, run:

    python cifar.py --config configs/resnet32_cifar10/90sparsity30epoch.yaml --gpus 0

    To find a lottery jackpot with 30 epochs for pruning 90% parameters of ResNet-50 on ImageNet, run:

    python imagenet.py --config configs/resnet50_imagenet/90sparsity30epoch.yaml --gpus 0

    Note that the data_path in the yaml file should be changed to the data

Evaluate Our Pruned Models

We provide configuration, training logs, and pruned models reported in the paper. They can be downloaded from the provided links in the following table:

Model Dataset Sparsity Epoch Top-1 Acc. Link
VGGNet-19 CIFAR-10 90% 30 93.88% link
VGGNet-19 CIFAR-10 90% 160 93.94% link
VGGNet-19 CIFAR-10 95% 30 93.49% link
VGGNet-19 CIFAR-10 95% 160 93.74% link
VGGNet-19 CIFAR-100 90% 30 72.59% link
VGGNet-19 CIFAR-100 90% 160 74.61% link
VGGNet-19 CIFAR-100 95% 30 71.76% link
VGGNet-19 CIFAR-100 95% 160 73.35% link
ResNet-32 CIFAR-10 90% 30 93.70% link
ResNet-32 CIFAR-10 90% 160 94.39% link
ResNet-32 CIFAR-10 95% 30 92.90% link
ResNet-32 CIFAR-10 95% 160 93.41% link
ResNet-32 CIFAR-100 90% 30 72.22% link
ResNet-32 CIFAR-100 90% 160 73.43% link
ResNet-32 CIFAR-100 95% 30 69.38% link
ResNet-32 CIFAR-100 95% 160 70.31% link
ResNet-50 ImageNet 80% 30 74.53% link
ResNet-50 ImageNet 80% 60 75.26% link
ResNet-50 ImageNet 90% 30 72.17% link
ResNet-50 ImageNet 90% 60 72.46% link

To test the our pruned models, download the pruned models and place them in the ckpt folder.

  1. Select a configuration file in configs to test the pruned models. For example, to evaluate a lottery jackpot for pruning ResNet-32 on CIFAR-10, run:

    python evaluate.py --config configs/resnet32_cifar10/evaluate.yaml --gpus 0

    To evaluate a lottery jackpot for pruning ResNet-50 on ImageNet, run:

    python evaluate.py --config configs/resnet50_imagenet/evaluate.yaml --gpus 0

Owner
Yuxin Zhang
Deep Neural Network Compression & Acceleration
Yuxin Zhang
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
We are More than Our JOints: Predicting How 3D Bodies Move

We are More than Our JOints: Predicting How 3D Bodies Move Citation This repo contains the official implementation of our paper MOJO: @inproceedings{Z

72 Oct 20, 2022
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations

Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations Code repo for paper Trans-Encoder: Unsupervised sentence-pa

Amazon 101 Dec 29, 2022
Credo AI Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data assessment, and acts as a central gateway to assessments created in the open source community.

Lens by Credo AI - Responsible AI Assessment Framework Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data a

Credo AI 27 Dec 14, 2022
Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Thomas Vuillaume 1 Dec 10, 2021
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
Script utilizando OpenCV e modelo Machine Learning para detectar o uso de máscaras.

Reconhecendo máscaras Este repositório contém um script em Python3 que reconhece se um rosto está ou não portando uma máscara! O código utiliza da bib

Maria Eduarda de Azevedo Silva 168 Oct 20, 2022
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
Hard cater examples from Hopper ICLR paper

CATER-h Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf (*Contact: honglu.zhou

NECLA ML Group 6 May 11, 2021
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7

Haotian Liu 1.1k Jan 06, 2023
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
AI Toolkit for Healthcare Imaging

Medical Open Network for AI MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its am

Project MONAI 3.7k Jan 07, 2023
Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21)

AdvRush Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21) Environmental Set-up Python == 3.6.12, PyTorch =

11 Dec 10, 2022
One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking This is an official implementation for NEAS presented in CVPR

Multimedia Research 19 Sep 08, 2022
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
This repository contains the DendroMap implementation for scalable and interactive exploration of image datasets in machine learning.

DendroMap DendroMap is an interactive tool to explore large-scale image datasets used for machine learning. A deep understanding of your data can be v

DIV Lab 33 Dec 30, 2022