CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

Related tags

Deep LearningCrossMLP
Overview

Python 3.6 Packagist Last Commit Maintenance Contributing Ask Me Anything !

CrossMLP

Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation
Bin Ren1, Hao Tang2, Nicu Sebe1.
1University of Trento, Italy, 2ETH, Switzerland.
In BMVC 2021 Oral.
The repository offers the official implementation of our paper in PyTorch.

🦖 News! We have updated the proposed CrossMLP(December 9th, 2021)!

Installation

  • Step1: Create a new virtual environment with anaconda
conda create -n crossmlp python=3.6
  • Step2: Install the required libraries
pip install -r requirement.txt

Dataset Preparation

For Dayton and CVUSA, the datasets must be downloaded beforehand. Please download them on the respective webpages. In addition, we put a few sample images in this code repo data samples. Please cite their papers if you use the data.

Preparing Ablation Dataset. We conduct ablation study in a2g (aerialto-ground) direction on Dayton dataset. To reduce the training time, we randomly select 1/3 samples from the whole 55,000/21,048 samples i.e. around 18,334 samples for training and 7,017 samples for testing. The trianing and testing splits can be downloaded here.

Preparing Dayton Dataset. The dataset can be downloaded here. In particular, you will need to download dayton.zip. Ground Truth semantic maps are not available for this datasets. We adopt RefineNet trained on CityScapes dataset for generating semantic maps and use them as training data in our experiments. Please cite their papers if you use this dataset. Train/Test splits for Dayton dataset can be downloaded from here.

Preparing CVUSA Dataset. The dataset can be downloaded here. After unzipping the dataset, prepare the training and testing data as discussed in our CrossMLP. We also convert semantic maps to the color ones by using this script. Since there is no semantic maps for the aerial images on this dataset, we use black images as aerial semantic maps for placehold purposes.

🌲 Note that for your convenience we also provide download scripts:

bash ./datasets/download_selectiongan_dataset.sh [dataset_name]

[dataset_name] can be:

  • dayton_ablation : 5.7 GB
  • dayton: 17.0 GB
  • cvusa: 1.3 GB

Training

Run the train_crossMlp.sh, whose content is shown as follows

python train.py --dataroot [path_to_dataset] \
	--name [experiment_name] \
	--model crossmlpgan \
	--which_model_netG unet_256 \
	--which_direction AtoB \
	--dataset_mode aligned \
	--norm batch \
	--gpu_ids 0 \
	--batchSize [BS] \
	--loadSize [LS] \
	--fineSize [FS] \
	--no_flip \
	--display_id 0 \
	--lambda_L1 100 \
	--lambda_L1_seg 1
  • For dayton or dayton_ablation dataset, [BS,LS,FS]=[4,286,256], set --niter 20 --niter_decay 15
  • For cvusa dataset, [BS,LS,FS]=[4,286,256], set --niter 15 --niter_decay 15

There are many options you can specify. Please use python train.py --help. The specified options are printed to the console. To specify the number of GPUs to utilize, use export CUDA_VISIBLE_DEVICES=[GPU_ID]. Training will cost about 3 days for dayton , less than 2 days for dayton_ablation, and less than 3 days for cvusa with the default --batchSize on one TITAN Xp GPU (12G). So we suggest you use a larger --batchSize, while performance is not tested using a larger --batchSize

To view training results and loss plots on local computers, set --display_id to a non-zero value and run python -m visdom.server on a new terminal and click the URL http://localhost:8097. On a remote server, replace localhost with your server's name, such as http://server.trento.cs.edu:8097.

Testing

Run the test_crossMlp.sh, whose content is shown as follows:

python test.py --dataroot [path_to_dataset] \
--name crossMlp_dayton_ablation \
--model crossmlpgan \
--which_model_netG unet_256 \
--which_direction AtoB \
--dataset_mode aligned \
--norm batch \
--gpu_ids 0 \
--batchSize 8 \
--loadSize 286 \
--fineSize 256 \
--saveDisk  \ 
--no_flip --eval

By default, it loads the latest checkpoint. It can be changed using --which_epoch.

We also provide image IDs used in our paper here for further qualitative comparsion.

Evaluation

Coming soon

Generating Images Using Pretrained Model

Coming soon

Contributions

If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Bin Ren ([email protected]).

Acknowledgments

This source code borrows heavily from Pix2pix and SelectionGAN. We also thank the authors X-Fork & X-Seq for providing the evaluation codes. This work was supported by the EU H2020 AI4Media No.951911project and by the PRIN project PREVUE.

Owner
Bingoren
Bingoren
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
A GridMixup augmentation, inspired by GridMask and CutMix

GridMixup A GridMixup augmentation, inspired by GridMask and CutMix Easy install pip install git+https://github.com/IlyaDobrynin/GridMixup.git Overvie

IlyaDo 42 Dec 28, 2022
Task-related Saliency Network For Few-shot learning

Task-related Saliency Network For Few-shot learning This is an official implementation in Tensorflow of TRSN. Abstract An essential cue of human wisdo

1 Nov 18, 2021
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh

Ayan Kumar Bhunia 22 Aug 27, 2022
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
DeepCAD: A Deep Generative Network for Computer-Aided Design Models

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022
A Python library for working with arbitrary-dimension hypercomplex numbers following the Cayley-Dickson construction of algebras.

Hypercomplex A Python library for working with quaternions, octonions, sedenions, and beyond following the Cayley-Dickson construction of hypercomplex

7 Nov 04, 2022
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

11 Nov 08, 2022
Code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in Video".

Consistent Depth of Moving Objects in Video This repository contains training code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in

Google 203 Jan 05, 2023
Code release for SLIP Self-supervision meets Language-Image Pre-training

SLIP: Self-supervision meets Language-Image Pre-training What you can find in this repo: Pre-trained models (with ViT-Small, Base, Large) and code to

Meta Research 621 Dec 31, 2022
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 03, 2023
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

AI4Finance 2.5k Jan 08, 2023
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy for sma

THUDM 540 Dec 30, 2022
Recommendation algorithms for large graphs

Fast recommendation algorithms for large graphs based on link analysis. License: Apache Software License Author: Emmanouil (Manios) Krasanakis Depende

Multimedia Knowledge and Social Analytics Lab 27 Jan 07, 2023
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022
Style-based Neural Drum Synthesis with GAN inversion

Style-based Drum Synthesis with GAN Inversion Demo TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the pap

Sound and Music Analysis (SoMA) Group 29 Nov 19, 2022
Scalable, event-driven, deep-learning-friendly backtesting library

...Minimizing the mean square error on future experience. - Richard S. Sutton BTGym Scalable event-driven RL-friendly backtesting library. Build on

Andrew 922 Dec 27, 2022