Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

Overview

WSDEC

This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos.

Description

Repo directories

  • ./: global config files, training, evaluating scripts;
  • ./data: data dictionary;
  • ./model: our final models used to reproduce the results;
  • ./runs: the default output dictionary used to store our trained model and result files;
  • ./scripts: helper scripts;
  • ./third_party: third party dependency include the official evaluation scripts;
  • ./utils: helper functions;
  • ./train_script: all training scripts;
  • ./eval_script: all evalulating scripts.

Dependency

  • Python 2.7
  • CUDA 9.0(note: you will encounter a bug saying segmentation fault(core dump) if you run our code with CUDA 8.0)
    • But it seems that the bug still exists. See issue
  • [Pytorch 0.3.1](note: 0.3.1 is not compatible with newer version)
  • numpy, hdf5 and other necessary packages(no special requirement)

Usage for reproduction

Before we start

Before the training and testing, we should make sure the data, third party data are prepared, here is the one-by-one steps to make everything prepared.

1. Clone our repo and submodules

git clone --recursive https://github.com/XgDuan/WSDEC

2. Download all the data

  • Download the official C3D features, you can either download the data from the website or from our onedrive cloud.

    • Download from the official website; (Note, after you download the C3D features, you can either place it in the data folder and rename it as anet_v1.3.c3d.hdf5, or create a soft link in the data dictionary as ln -s YOURC3DFeature data/anet_v1.3.c3d.hdf5)
  • Download the dense video captioning data from the official website; (Similar to the C3D feature, you are supposed to place the download data in the data folder and rename it as densecap)

  • Download the data for the official evaluation scripts densevid_eval;

    • run the command sh download.sh scripts in the folder PREFIX/WSDEC/third_party/densevid_eval;
  • [Good News]: we write a shell script for you to download the data, just run the following command:

    cd data
    sh download.sh
    

3. Generate the dictionary for the caption model

python scripts/caption_preprocess.py

Training

There are two steps for model training: pretrain a not so bad caption model; and the second step, train the final/baseline model.

Our pretrained captioning model is trained.

python train_script/train_cg_pretrain.py

train our final model

python train_script/train_final.py --checkpoint_cg YOUR_PRETRAINED_CAPTION_MODEL.ckp --alias MODEL_NAME

train baselines

  1. train the baseline model without classification loss.
python train_script/train_baseline_regressor.py --checkpoint_cg YOUR_PRETRAINED_CAPTION_MODEL.ckp --alias MODEL_NAME
  1. train the baseline model without regression branch.
python train_script/train_final.py --checkpoint_cg YOUR_PRETRAINED_CAPTION_MODEL.ckp --regressor_scale 0 --alias MODEL_NAME

About the arguments

All the arguments we use can be found in the corresponding training scripts. You can also use your own argumnets if you like to do so. But please mind, some arguments are discarded(This is our own reimplementation of our paper, the first version codes are too dirty that no one would like to use it.)

Testing

Testing is easier than training. Firstly, in the process of training, our scripts will call the densevid_eval in a subprocess every time after we run the eval function. From these results, you can have a general grasp about the final performance by just have a look at the eval_results.txt scripts. Secondly, after some epochs, you can run the evaluation scripts:

  1. evaluate the full model or no_regression model:
python eval_script/evaluate.py --checkpoint YOUR_TRAINED_MODEL.ckp
  1. evaluate the no_classification model:
python eval_script/evaluate_baseline_regressor.py --checkpoint YOUR_TRAINED_MODEL.ckp
  1. evaluate the pretrained model with random temporal segment:
python eval_script/evaluate_pretrain.py --checkpoint YOUR_PRETRAIN_CAPTION_MODEL.ckp

Other usages

Besides reproduce our work, there are at least two interesting things you can do with our codes.

Train a supervised sentence localization model

To know what is sentence localization, you can have a look at our paper ABLR. Note that our work at a matter of fact provides an unsupervised solution towards sentence localization, we introduce the usage for the supervised model here. We have written the trainer, you can just run the following command and have a cup of coffee:

python train_script/train_sl.py

Train a supervised video event caption generation model

If you have read our paper, you would find that event captioning is the dual task of the aforementioned sentence localization task. To train such a model, just run the following command:

python train_script/train_cg.py

BUGS

You may encounter a cuda internal bug that says Segmentation fault(core dumped) during training if you are using cuda 8.0. If such things happen, try upgrading your cuda to 9.0.

other

We will add more description about how to use our code. Please feel free to contact us if you have any questions or suggestions.

Trained model and results

Links for our trained model

You can download our pretrained model for evaluation or further usage from our onedrive, which includes a pretrained caption generator(cg_pretrain.ckp), a baseline model without classification loss(baseline_noclass.ckp), a baseline model without regression branch(baseline_noregress.ckp), and our final model(final_model.ckp).

Cite the paper and give us star ⭐️

If you find our paper or code useful, please cite our paper using the following bibtex:

@incollection{NIPS2018_7569,
title = {Weakly Supervised Dense Event Captioning in Videos},
author = {Duan, Xuguang and Huang, Wenbing and Gan, Chuang and Wang, Jingdong and Zhu, Wenwu and Huang, Junzhou},
booktitle = {Advances in Neural Information Processing Systems 31},
editor = {S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett},
pages = {3062--3072},
year = {2018},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/7569-weakly-supervised-dense-event-captioning-in-videos.pdf}
}
Owner
Melon(Xuguang Duan)
Lick the screen
Melon(Xuguang Duan)
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022

Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any

yueliu1999 109 Dec 23, 2022
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 01, 2023
End-To-End Crowdsourcing

End-To-End Crowdsourcing Comparison of traditional crowdsourcing approaches to a state-of-the-art end-to-end crowdsourcing approach LTNet on sentiment

Andreas Koch 1 Mar 06, 2022
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 07, 2023
RNN Predict Street Commercial Vitality

RNN-for-Predicting-Street-Vitality Code and dataset for Predicting the Vitality of Stores along the Street based on Business Type Sequence via Recurre

Zidong LIU 1 Dec 15, 2021
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
A list of all papers and resoureces on Semantic Segmentation

Semantic-Segmentation A list of all papers and resoureces on Semantic Segmentation. Dataset importance SemanticSegmentation_DL Some implementation of

Alan Tang 1.1k Dec 12, 2022
[NeurIPS 2021] Low-Rank Subspaces in GANs

Low-Rank Subspaces in GANs Figure: Image editing results using LowRankGAN on StyleGAN2 (first three columns) and BigGAN (last column). Low-Rank Subspa

112 Dec 28, 2022
Official Implementation of DE-CondDETR and DELA-CondDETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-CondDETR and DELA-Cond

Wen Wang 41 Dec 12, 2022
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
Powerful unsupervised domain adaptation method for dense retrieval.

Powerful unsupervised domain adaptation method for dense retrieval

Ubiquitous Knowledge Processing Lab 191 Dec 28, 2022
EssentialMC2 Video Understanding

EssentialMC2 Introduction EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2( relatio

Alibaba 106 Dec 11, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022
Some pre-commit hooks for OpenMMLab projects

pre-commit-hooks Some pre-commit hooks for OpenMMLab projects. Using pre-commit-hooks with pre-commit Add this to your .pre-commit-config.yaml - rep

OpenMMLab 16 Nov 29, 2022