Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

Overview

WSDEC

This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos.

Description

Repo directories

  • ./: global config files, training, evaluating scripts;
  • ./data: data dictionary;
  • ./model: our final models used to reproduce the results;
  • ./runs: the default output dictionary used to store our trained model and result files;
  • ./scripts: helper scripts;
  • ./third_party: third party dependency include the official evaluation scripts;
  • ./utils: helper functions;
  • ./train_script: all training scripts;
  • ./eval_script: all evalulating scripts.

Dependency

  • Python 2.7
  • CUDA 9.0(note: you will encounter a bug saying segmentation fault(core dump) if you run our code with CUDA 8.0)
    • But it seems that the bug still exists. See issue
  • [Pytorch 0.3.1](note: 0.3.1 is not compatible with newer version)
  • numpy, hdf5 and other necessary packages(no special requirement)

Usage for reproduction

Before we start

Before the training and testing, we should make sure the data, third party data are prepared, here is the one-by-one steps to make everything prepared.

1. Clone our repo and submodules

git clone --recursive https://github.com/XgDuan/WSDEC

2. Download all the data

  • Download the official C3D features, you can either download the data from the website or from our onedrive cloud.

    • Download from the official website; (Note, after you download the C3D features, you can either place it in the data folder and rename it as anet_v1.3.c3d.hdf5, or create a soft link in the data dictionary as ln -s YOURC3DFeature data/anet_v1.3.c3d.hdf5)
  • Download the dense video captioning data from the official website; (Similar to the C3D feature, you are supposed to place the download data in the data folder and rename it as densecap)

  • Download the data for the official evaluation scripts densevid_eval;

    • run the command sh download.sh scripts in the folder PREFIX/WSDEC/third_party/densevid_eval;
  • [Good News]: we write a shell script for you to download the data, just run the following command:

    cd data
    sh download.sh
    

3. Generate the dictionary for the caption model

python scripts/caption_preprocess.py

Training

There are two steps for model training: pretrain a not so bad caption model; and the second step, train the final/baseline model.

Our pretrained captioning model is trained.

python train_script/train_cg_pretrain.py

train our final model

python train_script/train_final.py --checkpoint_cg YOUR_PRETRAINED_CAPTION_MODEL.ckp --alias MODEL_NAME

train baselines

  1. train the baseline model without classification loss.
python train_script/train_baseline_regressor.py --checkpoint_cg YOUR_PRETRAINED_CAPTION_MODEL.ckp --alias MODEL_NAME
  1. train the baseline model without regression branch.
python train_script/train_final.py --checkpoint_cg YOUR_PRETRAINED_CAPTION_MODEL.ckp --regressor_scale 0 --alias MODEL_NAME

About the arguments

All the arguments we use can be found in the corresponding training scripts. You can also use your own argumnets if you like to do so. But please mind, some arguments are discarded(This is our own reimplementation of our paper, the first version codes are too dirty that no one would like to use it.)

Testing

Testing is easier than training. Firstly, in the process of training, our scripts will call the densevid_eval in a subprocess every time after we run the eval function. From these results, you can have a general grasp about the final performance by just have a look at the eval_results.txt scripts. Secondly, after some epochs, you can run the evaluation scripts:

  1. evaluate the full model or no_regression model:
python eval_script/evaluate.py --checkpoint YOUR_TRAINED_MODEL.ckp
  1. evaluate the no_classification model:
python eval_script/evaluate_baseline_regressor.py --checkpoint YOUR_TRAINED_MODEL.ckp
  1. evaluate the pretrained model with random temporal segment:
python eval_script/evaluate_pretrain.py --checkpoint YOUR_PRETRAIN_CAPTION_MODEL.ckp

Other usages

Besides reproduce our work, there are at least two interesting things you can do with our codes.

Train a supervised sentence localization model

To know what is sentence localization, you can have a look at our paper ABLR. Note that our work at a matter of fact provides an unsupervised solution towards sentence localization, we introduce the usage for the supervised model here. We have written the trainer, you can just run the following command and have a cup of coffee:

python train_script/train_sl.py

Train a supervised video event caption generation model

If you have read our paper, you would find that event captioning is the dual task of the aforementioned sentence localization task. To train such a model, just run the following command:

python train_script/train_cg.py

BUGS

You may encounter a cuda internal bug that says Segmentation fault(core dumped) during training if you are using cuda 8.0. If such things happen, try upgrading your cuda to 9.0.

other

We will add more description about how to use our code. Please feel free to contact us if you have any questions or suggestions.

Trained model and results

Links for our trained model

You can download our pretrained model for evaluation or further usage from our onedrive, which includes a pretrained caption generator(cg_pretrain.ckp), a baseline model without classification loss(baseline_noclass.ckp), a baseline model without regression branch(baseline_noregress.ckp), and our final model(final_model.ckp).

Cite the paper and give us star ⭐️

If you find our paper or code useful, please cite our paper using the following bibtex:

@incollection{NIPS2018_7569,
title = {Weakly Supervised Dense Event Captioning in Videos},
author = {Duan, Xuguang and Huang, Wenbing and Gan, Chuang and Wang, Jingdong and Zhu, Wenwu and Huang, Junzhou},
booktitle = {Advances in Neural Information Processing Systems 31},
editor = {S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett},
pages = {3062--3072},
year = {2018},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/7569-weakly-supervised-dense-event-captioning-in-videos.pdf}
}
Owner
Melon(Xuguang Duan)
Lick the screen
Melon(Xuguang Duan)
Memory-Augmented Model Predictive Control

Memory-Augmented Model Predictive Control This repository hosts the source code for the journal article "Composing MPC with LQR and Neural Networks fo

Fangyu Wu 1 Jun 19, 2022
Split Variational AutoEncoder

Split-VAE Split Variational AutoEncoder Introduction This repository contains and implemementation of a Split Variational AutoEncoder (SVAE). In a SVA

Andrea Asperti 2 Sep 02, 2022
Implementations of LSTM: A Search Space Odyssey variants and their training results on the PTB dataset.

An LSTM Odyssey Code for training variants of "LSTM: A Search Space Odyssey" on Fomoro. Check out the blog post. Training Install TensorFlow. Clone th

Fomoro AI 95 Apr 13, 2022
Implementation of Kalman Filter in Python

Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.

Enoch Kan 35 Sep 11, 2022
Wav2Vec for speech recognition, classification, and audio classification

Soxan در زبان پارسی به نام سخن This repository consists of models, scripts, and notebooks that help you to use all the benefits of Wav2Vec 2.0 in your

Mehrdad Farahani 140 Dec 15, 2022
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022
PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recur

Jie Lei 雷杰 151 Jan 06, 2023
Bayesian Optimization Library for Medical Image Segmentation.

bayesmedaug: Bayesian Optimization Library for Medical Image Segmentation. bayesmedaug optimizes your data augmentation hyperparameters for medical im

Şafak Bilici 7 Feb 10, 2022
Pytorch implementation of MixNMatch

MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation [Paper] Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, Yong Jae Le

910 Dec 30, 2022
Tutorial repo for an end-to-end Data Science project

End-to-end Data Science project This is the repo with the notebooks, code, and additional material used in the ITI's workshop. The goal of the session

Deena Gergis 127 Dec 30, 2022
Minimal PyTorch implementation of YOLOv3

A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

Erik Linder-Norén 6.9k Dec 29, 2022
Google Landmark Recogntion and Retrieval 2021 Solutions

Google Landmark Recogntion and Retrieval 2021 Solutions In this repository you can find solution and code for Google Landmark Recognition 2021 and Goo

Vadim Timakin 5 Nov 25, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
A basic duplicate image detection service using perceptual image hash functions and nearest neighbor search, implemented using faiss, fastapi, and imagehash

Duplicate Image Detection Getting Started Install dependencies pip install -r requirements.txt Run service python main.py Testing Test with pytest How

Matthew Podolak 21 Nov 11, 2022
This repository collects 100 papers related to negative sampling methods.

Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda

RUCAIBox 119 Dec 29, 2022
PyTorch implementation of Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction (ICCV 2021).

Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction Introduction This is official PyTorch implementation of Towards Accurate Alignment

TANG Xiao 96 Dec 27, 2022
Bachelor's Thesis in Computer Science: Privacy-Preserving Federated Learning Applied to Decentralized Data

federated is the source code for the Bachelor's Thesis Privacy-Preserving Federated Learning Applied to Decentralized Data (Spring 2021, NTNU) Federat

Dilawar Mahmood 25 Nov 30, 2022