Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Overview

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

This repository is the official implementation of [Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification] (to appear in the proceedings of NIPS'21).

Requirements

To install requirements (Python 3.6.9):

python3 -m pip install -r requirements.txt

Getting started

Reproduce results from the paper

In order to run ExperimentXXX in the paper, do as follows

  • Run command
cd experiments_scripts/
./ExperimentXXX.sh
  • That starts the computation, when it is done, the following files are present in the results/ folder

    • ExperimentXXX/method=[algorithm]_[list of options = values].csv

      Contains a matrix of 3 columns ("complexity": number of sampled arms, "regret": error in identification, "linearity": 1 if the algorithm considers data as linear, 0 otherwise, "running time": time in seconds for running the iteration) and XXX rows (controlled by parameter n_simu in the command) corresponding to each iteration of the algorithm.

    • ExperimentXXX/method=[algorithm]_[list of options = values]-emp_rec.csv

      Contains a matrix of XXX columns (number of arms in the experiment, controlled by parameter K in the command), and two rows, first row being the names of the arms, and the second one being the percentage of the time a given arm was returned in the set of good arms across iterations.

    • ExperimentXXX/params.json

      Saves in a JSON file the parameters set in the call to the code.

  • PNG file ExperimentXXX/boxplot.png is created in folder boxplots/

You can only run the code to plot the boxplot from a previously run ExperimentXXX

  • Run command
cd experiments_scripts
./ExperimentXXX.sh boxplot

ExperimentXXX won't be run, but if the corresponding results folder is present, then it creates the boxplot in folder boxplots/ExperimentXXX

Run

Have a look at file code/main.py to see the arguments needed.

Add new elements of code

  • Add a new bandit by creating a new instance of class Misspecified in file code/misspecified.py
  • Add a new dataset by adding a few lines of code to file code/data.py
  • Add new types of rewards by creating a new instance of class problem in file code/problems.py
  • Add new types of online learners by creating a new instance of class Learner in file code/learners.py

Results

Please refer to the paper.

Contributing

All of the code is under MIT license. Everyone is most welcome to submit pull requests.

ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation

ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation (Accepted by BMVC'21) Abstract: Images acquir

10 Dec 08, 2022
Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini!

ConversorDeMedidas_CapuccinoGelado Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini! Requirem

Arthur Ottoni Ribeiro 48 Nov 15, 2022
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
Code for "R-GCN: The R Could Stand for Random"

RR-GCN: Random Relational Graph Convolutional Networks PyTorch Geometric code for the paper "R-GCN: The R Could Stand for Random" RR-GCN is an extensi

PreDiCT.IDLab 31 Sep 07, 2022
EfficientDet (Scalable and Efficient Object Detection) implementation in Keras and Tensorflow

EfficientDet This is an implementation of EfficientDet for object detection on Keras and Tensorflow. The project is based on the official implementati

1.3k Dec 19, 2022
A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

OutliersSlidingWindows A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows" Dataset generatio

PaoloPellizzoni 0 Jan 05, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore

[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6101 of Semester 1, AY2021-2022, starting from 08/2021. The instructors of

AccSrd 1 Sep 22, 2022
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 188 Dec 29, 2022
Code I use to automatically update my videos' metadata on YouTube

mCodingYouTube This repository contains the code I use to automatically update my videos' metadata on YouTube, including: titles, descriptions, tags,

James Murphy 19 Oct 07, 2022
Transformers are Graph Neural Networks!

🚀 Gated Graph Transformers Gated Graph Transformers for graph-level property prediction, i.e. graph classification and regression. Associated article

Chaitanya Joshi 46 Jun 30, 2022
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022
A python library for self-supervised learning on images.

Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi

Lightly 2k Jan 08, 2023
FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning

FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning (FedML) developed and maintained by Scaleout Systems. FEDn enables highly scalable cross-silo and cr

Scaleout 75 Nov 09, 2022
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022
On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation On Nonlinear Latent Transformations for GAN-based Image Editi

Valentin Khrulkov 22 Oct 24, 2022
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022