In the case of your data having only 1 channel while want to use timm models

Overview

timm_custom

Description

In the case of your data having only 1 channel while want to use timm models (with or without pretrained weights), run the following command to get the model with appropriate number of input channels.

python load_timm.py --model "densenet" --model_depth 121 --pretrained True --num_classes=4 --n_input_channels 1

Argument

The argument explanation is below:

usage: load_timm.py [-h] [--model MODEL] [--model_depth MODEL_DEPTH]
                    [--pretrained PRETRAINED] [--num_classes NUM_CLASSES]
                    [--n_input_channels N_INPUT_CHANNELS]

optional arguments:
  -h, --help            show this help message and exit
  --model MODEL         Model name
  --model_depth MODEL_DEPTH
                        Depth of the model
  --pretrained PRETRAINED
                        If true, will use ImageNet pretrained weight
  --num_classes NUM_CLASSES
                        number of classes
  --n_input_channels N_INPUT_CHANNELS
                        number of input channels

Notice that the script will check if the given model + model_depth is in timm models. Additionally, if pretrained=True, it will check if that particular model has a pretraiend weight or not. If not, it will just set pretrained=False.

Usage

In the case of a project where it handles CT images, it only has 1 channel since there is no RGB channel.

Example

When running python load_timm.py --model "densenet" --model_depth 121 --pretrained True --num_classes=4 --n_input_channels 3, the model architecture is shown below:

DenseNet(
  (features): Sequential(
    (conv0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
    (norm0): BatchNormAct2d(
      64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
      (act): ReLU(inplace=True)
    )
...

When running python load_timm.py --model "densenet" --model_depth 121 --pretrained True --num_classes=4 --n_input_channels 1, the model architecture has been updated as shown below:

DenseNet(
  (features): Sequential(
    (conv0): Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
    (norm0): BatchNormAct2d(
      64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
      (act): ReLU(inplace=True)
    )
...

Warning

Since timm models pretrained weights are trained on the ImageNet dataset (which has 3 channels), it will lose the "initial benefit" of pretrained weights.

Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
Stochastic gradient descent with model building

Stochastic Model Building (SMB) This repository includes a new fast and robust stochastic optimization algorithm for training deep learning models. Th

S. Ilker Birbil 22 Jan 19, 2022
Code for the paper "Query Embedding on Hyper-relational Knowledge Graphs"

Query Embedding on Hyper-Relational Knowledge Graphs This repository contains the code used for the experiments in the paper Query Embedding on Hyper-

DimitrisAlivas 19 Jul 26, 2022
MPViT:Multi-Path Vision Transformer for Dense Prediction

MPViT : Multi-Path Vision Transformer for Dense Prediction This repository inlcu

Youngwan Lee 272 Dec 20, 2022
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb

Mustapha Unubi Momoh 2 Sep 13, 2022
Trajectory Prediction with Graph-based Dual-scale Context Fusion

DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C

HKUST Aerial Robotics Group 103 Jan 04, 2023
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture

Microsoft 12.4k Dec 31, 2022
This code provides various models combining dilated convolutions with residual networks

Overview This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less

Fisher Yu 1.1k Dec 30, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
A PyTorch-based Semi-Supervised Learning (SSL) Codebase for Pixel-wise (Pixel) Vision Tasks

PixelSSL is a PyTorch-based semi-supervised learning (SSL) codebase for pixel-wise (Pixel) vision tasks. The purpose of this project is to promote the

Zhanghan Ke 255 Dec 11, 2022
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
Official code repository for the publication "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons"

Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons This repository contains the code to repr

Computational Neuroscience, University of Bern 3 Aug 04, 2022
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning This is the official PyTorch implementation for UniMoCo pape

dddzg 49 Jan 02, 2023
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

SE3 Pose Interpolation Pose estimated from SLAM system are always discrete, and

Ran Cheng 4 Dec 15, 2022
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.datasets: The raw text iterators for common NLP datasets torchtext.data: Some basic NLP building bloc

3.2k Jan 08, 2023
Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Sajjad Ayobi 188 Dec 28, 2022