Flexible Option Learning - NeurIPS 2021

Related tags

Deep LearningMOC
Overview

Flexible Option Learning

This repository contains code for the paper Flexible Option Learning presented as a Spotlight at NeurIPS 2021. The implementation is based on gym-miniworld, OpenAI's baselines and the Option-Critic's tabular implementation.

Contents:

Tabular Experiments (Four-Rooms)

Installation and Launch code

pip install gym==0.12.1
cd diagnostic_experiments/
python main_fixpol.py --multi_option # for experiments with fixed options
python main.py --multi_option # for experiments with learned options

Continuous Control (MuJoCo)

Installation

virtualenv moc_cc --python=python3
source moc_cc/bin/activate
pip install tensorflow==1.12.0 
cd continuous_control
pip install -e . 
pip install gym==0.9.3
pip install mujoco-py==0.5.1

Launch

cd baselines/ppoc_int
python run_mujoco.py --switch --nointfc --env AntWalls --eta 0.9 --mainlr 8e-5 --intlr 8e-5 --piolr 8e-5

Maze Navigation (MiniWorld)

Installation

virtualenv moc_vision --python=python3
source moc_vision/bin/activate
pip install tensorflow==1.13.1
cd vision_miniworld
pip install -e .
pip install gym==0.15.4

Launch

cd baselines/
# Run agent in first task
python run.py --alg=ppo2_options --env=MiniWorld-WallGap-v0 --num_timesteps 2500000 --save_interval 1000  --num_env 8 --noptions 4 --eta 0.7

# Load and run agent in transfer task
python run.py --alg=ppo2_options --env=MiniWorld-WallGapTransfer-v0 --load_path path/to/model --num_timesteps 2500000 --save_interval 1000  --num_env 8 --noptions 4 --eta 0.7

Cite

If you find this work useful to you, please consider adding you to your references.

@inproceedings{
klissarov2021flexible,
title={Flexible Option Learning},
author={Martin Klissarov and Doina Precup},
booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
year={2021},
url={https://openreview.net/forum?id=L5vbEVIePyb}
}
Owner
Martin Klissarov
PhD student at McGill University
Martin Klissarov
Caffe-like explicit model constructor. C(onfig)Model

cmodel Caffe-like explicit model constructor. C(onfig)Model Installation pip install git+https://github.com/bonlime/cmodel Usage In order to allow usi

1 Feb 18, 2022
RAMA: Rapid algorithm for multicut problem

RAMA: Rapid algorithm for multicut problem Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without

Paul Swoboda 60 Dec 13, 2022
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb

Mustapha Unubi Momoh 2 Sep 13, 2022
A TensorFlow implementation of SOFA, the Simulator for OFfline LeArning and evaluation.

SOFA This repository is the implementation of SOFA, the Simulator for OFfline leArning and evaluation. Keeping Dataset Biases out of the Simulation: A

22 Nov 23, 2022
Code for pre-training CharacterBERT models (as well as BERT models).

Pre-training CharacterBERT (and BERT) This is a repository for pre-training BERT and CharacterBERT. DISCLAIMER: The code was largely adapted from an o

Hicham EL BOUKKOURI 31 Dec 05, 2022
A simple root calculater for python

Root A simple root calculater Usage/Examples python3 root.py 9 3 4 # Order: number - grid - number of decimals # Output: 2.08

Reza Hosseinzadeh 5 Feb 10, 2022
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function

BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func

Yong Pi 2 Mar 09, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* Any questions or discussions ar

sunshine.lwt 112 Jan 05, 2023
A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

powerycy 40 Dec 14, 2022
TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network

TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network Created by Seunghoon Hong, Junhyuk Oh,

42 Jun 29, 2022
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
bio_inspired_min_nets_improve_the_performance_and_robustness_of_deep_networks

Code Submission for: Bio-inspired Min-Nets Improve the Performance and Robustness of Deep Networks Run with docker To build a docker environment, chan

0 Dec 09, 2021
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021