Official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting

Related tags

Deep LearningSNAS4MTF
Overview

1 SNAS4MTF

This repo is the official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting.

1.1 The framework of SNAS4MTF

framework

2 Prerequisites

  • Python 3.6.12
  • PyTorch 1.2.0
  • math, sklearn, numpy

3 Datasets

3.1 METR-LA

This dataset is collected by the Los Angeles Metropolitan Transportation Authority and contains the average traffic speed measured by 207 loop detectors on the highways of Los Angeles County between March 2012 and June 2012.

3.2 PEMS-BAY

The raw data is in http://pems.dot.ca.gov. This dataset is collected by California Transportation Agencies and contains the average traffic speed measured by 325 sensors in the Bay Area between January 2017 and May 2017.

4 Running

4.1 Install all dependencies listed in prerequisites

4.2 Download the dataset

4.3 Neural Architecture Search

# Neural Architecture Search on PEMS_BAY
 python search.py --config config/PEMS_BAY_para.yaml |& tee logs/search_PEMS_BAY.log
 # Neural Architecture Search on METR_LA
 python search.py --config config/METR_LA_para.yaml |& tee logs/search_METR_LA.log

4.4 Training

# Train on PEMS_BAY
python train.py --config config/PEMS_BAY_para.yaml  |& tee logs/train_PEMS_BAY.log
# Train on METR-LA
python train.py --config config/METR_LA_para.yaml |& tee logs/train_METR_LA.log

4.5 Evaluating

# Evaluate on PEMS_BAY
python test.py --config config/PEMS_BAY_para.yaml |& tee logs/test_PEMS_BAY.log
# Evaluate on METR-LA
python test.py --config config/METR_LA_para.yaml |& tee logs/test_METR_LA.log

5 Citation

Please cite the following paper if you use the code in your work:

@Inproceedings{616B,
  title={Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting.},
  author={Donghui Chen, Ling Chen, Youdong Zhang, et al.},
  booktitle={},
  year={2021}
}
Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Perceiver - Pytorch Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch Install $ pip install perceiver-pytorch Usage

Phil Wang 876 Dec 29, 2022
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go This repository provides our implementation of the CVPR 2021 paper NeuroMorp

Meta Research 35 Dec 08, 2022
Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

CVTEAM 28 Oct 20, 2022
The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization".

Codebase for learning control flow in transformers The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformer

Csordás Róbert 24 Oct 15, 2022
Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp Learning to Regrasp by Learning to Place, CoRL 2021. Introduction We propose a point-cloud-based system for robots to predict a seque

Shuo Cheng (成硕) 18 Aug 27, 2022
Reading Group @mila-iqia on Computational Optimal Transport for Machine Learning Applications

Computational Optimal Transport for Machine Learning Reading Group Over the last few years, optimal transport (OT) has quickly become a central topic

Ali Harakeh 11 Aug 26, 2022
🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

Realcat 270 Jan 07, 2023
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

HeadNeRF: A Real-time NeRF-based Parametric Head Model This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametr

294 Jan 01, 2023
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022
Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

TimeLens: Event-based Video Frame Interpolation This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper T

Robotics and Perception Group 544 Dec 19, 2022
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022
Code for layerwise detection of linguistic anomaly paper (ACL 2021)

Layerwise Anomaly This repository contains the source code and data for our ACL 2021 paper: "How is BERT surprised? Layerwise detection of linguistic

6 Dec 07, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022