Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Overview

Auto-Tuned Sim-to-Real Transfer

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer. The paper will be released shortly on arXiv.

This repository was forked from the CURL codebase.

Installation

Install mujoco, if it is not already installed.

Add this to bashrc:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/olivia/.mujoco/mujoco200/bin

Apt-install these packages:

sudo apt-get install libosmesa6-dev
sudo apt-get install patchelf

All of the dependencies are in the conda_env.yml file. They can be installed manually or with the following command:

conda env create -f conda_env.yml

Enter the environments directory and run

pip install -e .

Instructions

Here is an example experiment run command.

CUDA_VISIBLE_DEVICES=0 python train.py --gpudevice 0 --id S3000 --outer_loop_version 3 --dr --start_outer_loop 5000 --train_sim_param_every 1 --prop_alpha --update_sim_param_from both --alpha 0.1 --mean_scale 1.75 --train_range_scale .5 --domain_name dmc_ball_in_cup --task_name catch --action_repeat 4 --range_scale .5 --scale_large_and_small --dr_option simple_dr --save_tb --use_img --encoder_type pixel --num_eval_episodes 1 --seed 1 --num_train_steps 1000000 --encoder_feature_dim 64 --num_layers 4 --num_filters 32 --sim_param_layers 2 --sim_param_units 400 --sim_param_lr .001 --prop_range_scale --prop_train_range_scale --separate_trunks --num_sim_param_updates 3 --save_video --eval_freq 2000 --num_eval_episodes 3 --save_model --save_buffer --no_train_policy
--outer_loop_version refers to the method by which we update simulation parameters. 1 means we update with regression, and 3 means binary classifier.
--scale_large_and_small means that half of the mean values in our simulation randomization will be randomly chosen to be too large, and the other half will be too small. If this flag is not provided, they will all be too large.
--mean_scale refers to the mean of the simulator distribution. A mean of k means that all simulation parameters are k times or 1/k times the true mean (randomly chosen for each param).
--range_scale refers to the range of the uniform distribution we use to collect samples to train the policy.
--train_range_scale refers to the range of the uniform distribution we use to collect samples to train the Search Param Model. This value is typically set >= to --range_scale.
--prop_range_scale and --prop_train_range_scale make the distribution ranges a scale multiple of the mean value rather than constants.

Check train.py for a full list of run commands.

During training, in your console, you should see printouts that look like:

| train | E: 221 | S: 28000 | D: 18.1 s | R: 785.2634 | BR: 3.8815 | A_LOSS: -305.7328 | CR_LOSS: 190.9854 | CU_LOSS: 0.0000
| train | E: 225 | S: 28500 | D: 18.6 s | R: 832.4937 | BR: 3.9644 | A_LOSS: -308.7789 | CR_LOSS: 126.0638 | CU_LOSS: 0.0000
| train | E: 229 | S: 29000 | D: 18.8 s | R: 683.6702 | BR: 3.7384 | A_LOSS: -311.3941 | CR_LOSS: 140.2573 | CU_LOSS: 0.0000
| train | E: 233 | S: 29500 | D: 19.6 s | R: 838.0947 | BR: 3.7254 | A_LOSS: -316.9415 | CR_LOSS: 136.5304 | CU_LOSS: 0.0000

Log abbreviation mapping:

train - training episode
E - total number of episodes 
S - total number of environment steps
D - duration in seconds to train 1 episode
R - mean episode reward
BR - average reward of sampled batch
A_LOSS - average loss of actor
CR_LOSS - average loss of critic
CU_LOSS - average loss of the CURL encoder

All data related to the run is stored in the specified working_dir. To enable model or video saving, use the --save_model or --save_video flags. For all available flags, inspect train.py. To visualize progress with tensorboard run:

tensorboard --logdir log --port 6006

and go to localhost:6006 in your browser. If you're running headlessly, try port forwarding with ssh.

For GPU accelerated rendering, make sure EGL is installed on your machine and set export MUJOCO_GL=egl. For environment troubleshooting issues, see the DeepMind control documentation.

Debugging common installation errors

Error message ERROR: GLEW initalization error: Missing GL version

  • Make sure /usr/lib/x86_64-linux-gnu/libGLEW.so and /usr/lib/x86_64-linux-gnu/libGL.so exist. If not, apt-install them.
  • Try trying adding the powerset of those two paths to LD_PRELOAD.

Error Shadow framebuffer is not complete, error 0x8cd7

  • Like above, make sure libglew and libGL are installed.
  • If /usr/lib/nvidia exists but '/usr/lib/nvidia-430/(or some other number) does not exist, runln -s /usr/lib/nvidia /usr/lib/nvidia-430`. It may have to match the number of your nvidia driver, I'm not sure.
  • Consider adding that symlink to LD_LIBRARY PATH.
  • If /usr/lib/nvidia doesn't exist, and neither does /usr/lib/nvidia-xxx, then create the folder /usr/lib/nvidia /usr/lib/nvidia-430.

Error message `RuntimeError: Failed to initialize OpenGL:

  • Make sure MUJOCO_GL is correct (egl for DMC, osmesa for anything else).
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se

Intelligent Vision for Robotics in Complex Environment 10 Nov 07, 2022
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022
Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Kim Seonghyeon 2.2k Jan 01, 2023
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
Fermi Problems: A New Reasoning Challenge for AI

Fermi Problems: A New Reasoning Challenge for AI Fermi Problems are questions whose answer is a number that can only be reasonably estimated as a prec

AI2 15 May 28, 2022
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation

AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti

Hao Tang 530 Dec 27, 2022
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

RR_Inyo 3 Sep 23, 2022
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.

English | 简体中文 Documentation: https://mmtracking.readthedocs.io/ Introduction MMTracking is an open source video perception toolbox based on PyTorch.

OpenMMLab 2.7k Jan 08, 2023
Awesome Weak-Shot Learning

Awesome Weak-Shot Learning In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base cat

BCMI 162 Dec 30, 2022
An Efficient Implementation of Analytic Mesh Algorithm for 3D Iso-surface Extraction from Neural Networks

AnalyticMesh Analytic Marching is an exact meshing solution from neural networks. Compared to standard methods, it completely avoids geometric and top

Karbo 45 Dec 21, 2022
MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

Michael Murray 6 Oct 25, 2020
Implementation of TabTransformer, attention network for tabular data, in Pytorch

Tab Transformer Implementation of Tab Transformer, attention network for tabular data, in Pytorch. This simple architecture came within a hair's bread

Phil Wang 420 Jan 05, 2023
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
MADE (Masked Autoencoder Density Estimation) implementation in PyTorch

pytorch-made This code is an implementation of "Masked AutoEncoder for Density Estimation" by Germain et al., 2015. The core idea is that you can turn

Andrej 498 Dec 30, 2022
REGTR: End-to-end Point Cloud Correspondences with Transformers

REGTR: End-to-end Point Cloud Correspondences with Transformers This repository contains the source code for REGTR. REGTR utilizes multiple transforme

Zi Jian Yew 108 Dec 17, 2022
SAFL: A Self-Attention Scene Text Recognizer with Focal Loss

SAFL: A Self-Attention Scene Text Recognizer with Focal Loss This repository implements the SAFL in pytorch. Installation conda env create -f environm

6 Aug 24, 2022