Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

Overview

line scanning repository

plot

This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza Centre for Neuroimaging in Amsterdam. The script master controls the modules prefixed by spinoza_, which in turn call upon various scripts in the utils and bin directory. The scripts in the latter folders are mostly helper scripts to make life a tad easier. The repository contains a mix of languages in bash, python, and matlab.

In active development - do not use unless otherwise instructed by repo owners

Documentation for this package can be found at readthedocs (not up to date)

Policy & To Do

  • install using python setup.py develop
  • Docstrings in numpy format.
  • PEP8 - please set your editor to autopep8 on save!
  • Documentation with Sphinx (WIP)
  • Explore options to streamline code
  • Examples of applications for package (integration of pycortex & pRFpy)

overview of the pipeline

how to set up

Clone the repository: git clone https://github.com/gjheij/linescanning.git.

To setup the bash environment, edit setup file linescanning/shell/spinoza_setup:

  • line 76: add the path to your matlab installation if available (should be, for better anatomicall preprocessing)
  • line 87: add the path to your SPM installation
  • line 92: add your project name
  • line 97: add the path to project name as defined in line 92
  • line 102: add whether you're using (ME)MP(2)RAGE. This is required because the pipeline allows the usage of the average of an MP2RAGE and MP2RAGEME acquisition
  • line 105: add which type of data you're using (generally this will be the same as line 102)

Go to linescanning/shell and hit ./spinoza_setup setup setup. This will print a set of instructions that you need to follow. If all goes well this will make all the script executable, set all the paths, and install the python modules. The repository comes with a conda environment file, which can be activated with: conda create --name myenv --file environment.yml.

How to plan the line

plot

We currently aim to have two separate sessions: in the first session, we acquire high resolution anatomical scans and perform a population receptive field (pRF-) mapping paradigm (Dumoulin and Wandell, 2008) to delineate the visual field. After this session, we create surfaces of the brain and map the pRFs onto that via fMRIprep and pRFpy. We then select a certain vertex based on the parameters extracted from the pRF-mapping: eccentricity, size, and polar angle. Using these parameters, we can find an optimal vertex. We can obtain the vertex position, while by calculating the normal vector, we obtain the orientation that line should have (parellel to the normal vector and through the vertex point). Combining this information, we know how the line should be positioned in the first session anatomy. In the second session, we first acquire a low-resolution MP2RAGE with the volume coil. This is exported and registered to the first session anatomy during the second session to obtain the translations and rotations needed to map the line from the first session anatomy to the currently active second session by inputting the values in the MR-console. This procedure from registration to calculation of MR-console values is governed by spinoza_lineplanning and can be called with master -m 00 -s -h .

Owner
Jurjen Heij
Jurjen Heij
Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC.

Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC. Para los Laboratorios de la materia, vamos a utilizar el len

Luis Biedma 18 Dec 12, 2022
Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch

SRDenseNet-pytorch Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch (http://openaccess.thecvf.com/content_ICC

wxy 114 Nov 26, 2022
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
People movement type classifier with YOLOv4 detection and SORT tracking.

Movement classification The goal of this project would be movement classification of people, in other words, walking (normal and fast) and running. Yo

4 Sep 21, 2021
The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper.

Intermdiate layer matters - SSL The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper. Downl

Aakash Kaku 35 Sep 19, 2022
QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

QAHOI QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper) Requirements PyTorch = 1.5.1 torchvision = 0.6.1 pip install -r requ

38 Dec 29, 2022
Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications

Labelbox Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications. Use this github repository to help you s

labelbox 1.7k Dec 29, 2022
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Curso em Vídeo - Exercícios de Python 3 Sobre o repositório Este repositório contém os notebooks com a listas de exercícios propostos pelo professor G

João Pedro Pereira 9 Oct 15, 2022
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022
Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

TransNAS-Bench-101 This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizabili

Yawen Duan 17 Nov 20, 2022
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 04, 2023
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

308 Jan 04, 2023
Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning

3 Jun 09, 2021
Generative Handwriting using LSTM Mixture Density Network with TensorFlow

Generative Handwriting Demo using TensorFlow An attempt to implement the random handwriting generation portion of Alex Graves' paper. See my blog post

hardmaru 686 Nov 24, 2022
COLMAP - Structure-from-Motion and Multi-View Stereo

COLMAP About COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and command-line interface.

4.7k Jan 07, 2023