This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Overview

Deep learning for Earth Observation

http://www.onera.fr/en/dtim https://www-obelix.irisa.fr/

This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning.

We build on the SegNet architecture (Badrinarayanan et al., 2015) to provide a semantic labeling network able to perform dense prediction on remote sensing data. The implementation uses the PyTorch framework.

Motivation

Earth Observation consists in visualizing and understanding our planet thanks to airborne and satellite data. Thanks to the release of large amounts of both satellite (e.g. Sentinel and Landsat) and airborne images, Earth Observation entered into the Big Data era. Many applications could benefit from automatic analysis of those datasets : cartography, urban planning, traffic analysis, biomass estimation and so on. Therefore, lots of progresses have been made to use machine learning to help us have a better understanding of our Earth Observation data.

In this work, we show that deep learning allows a computer to parse and classify objects in an image and can be used for automatical cartography from remote sensing data. Especially, we provide examples of deep fully convolutional networks that can be trained for semantic labeling for airborne pictures of urban areas.

Content

Deep networks

We provide a deep neural network based on the SegNet architecture for semantic labeling of Earth Observation images.

All the pre-trained weights can be found on the OBELIX team website (backup link.

Data

Our example models are trained on the ISPRS Vaihingen dataset and ISPRS Potsdam dataset. We use the IRRG tiles (8bit format) and we build 8bit composite images using the DSM, NDSM and NDVI.

You can either use our script from the OSM folder (based on the Maperitive software) to generate OpenStreetMap rasters from the images, or download the OSM tiles from Potsdam here.

The nDSM for the Vaihingen dataset is available here (courtesy of Markus Gerke, see also his webpage). The nDSM for the Potsdam dataset is available here.

How to start

Just run the SegNet_PyTorch_v2.ipynb notebook using Jupyter!

Requirements

Find the right version for your setup and install PyTorch.

Then, you can use pip or any package manager to install the packages listed in requirements.txt, e.g. by using:

pip install -r requirements.txt

References

If you use this work for your projects, please take the time to cite our ISPRS Journal paper :

https://arxiv.org/abs/1711.08681 Nicolas Audebert, Bertrand Le Saux and Sébastien Lefèvre, Beyond RGB: Very High Resolution Urban Remote Sensing With Multimodal Deep Networks, ISPRS Journal of Photogrammetry and Remote Sensing, 2017.

@article{audebert_beyond_2017,
title = "Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks",
journal = "ISPRS Journal of Photogrammetry and Remote Sensing",
year = "2017",
issn = "0924-2716",
doi = "https://doi.org/10.1016/j.isprsjprs.2017.11.011",
author = "Nicolas Audebert and Bertrand Le Saux and Sébastien Lefèvre",
keywords = "Deep learning, Remote sensing, Semantic mapping, Data fusion"
}

License

Code (scripts and Jupyter notebooks) are released under the GPLv3 license for non-commercial and research purposes only. For commercial purposes, please contact the authors.

https://creativecommons.org/licenses/by-nc-sa/3.0/ The network weights are released under Creative-Commons BY-NC-SA. For commercial purposes, please contact the authors.

See LICENSE.md for more details.

Acknowledgements

This work has been conducted at ONERA (DTIM) and IRISA (OBELIX team), with the support of the joint Total-ONERA research project NAOMI.

The Vaihingen data set was provided by the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF).

Say Thanks!

Owner
Nicolas Audebert
Assistant professor in Computer Science. Resarcher on computer vision and deep learning.
Nicolas Audebert
Detectron2 for Document Layout Analysis

Detectron2 trained on PubLayNet dataset This repo contains the training configurations, code and trained models trained on PubLayNet dataset using Det

Himanshu 163 Nov 21, 2022
Create time-series datacubes for supervised machine learning with ICEYE SAR images.

ICEcube is a Python library intended to help organize SAR images and annotations for supervised machine learning applications. The library generates m

ICEYE Ltd 65 Jan 03, 2023
Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".

SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation Source code for the paper "SimReg: Regression as a Simple Yet E

9 Oct 15, 2022
Code for "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection", ICRA 2021

FGR This repository contains the python implementation for paper "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection"(I

Yi Wei 31 Dec 08, 2022
LinkNet - This repository contains our Torch7 implementation of the network developed by us at e-Lab.

LinkNet This repository contains our Torch7 implementation of the network developed by us at e-Lab. You can go to our blogpost or read the article Lin

e-Lab 158 Nov 11, 2022
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022
[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

RainNet — Official Pytorch Implementation Region-aware Adaptive Instance Normalization for Image Harmonization Jun Ling, Han Xue, Li Song*, Rong Xie,

130 Dec 11, 2022
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 07, 2023
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 06, 2023
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

Ronnie 216 Dec 26, 2022
Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency[ECCV 2020]

Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency(ECCV 2020) This is an official python implementati

304 Jan 03, 2023
Many Class Activation Map methods implemented in Pytorch for CNNs and Vision Transformers. Including Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM and XGrad-CAM

Class Activation Map methods implemented in Pytorch pip install grad-cam ⭐ Tested on many Common CNN Networks and Vision Transformers. ⭐ Includes smoo

Jacob Gildenblat 6.6k Jan 06, 2023
A PyTorch implementation of Radio Transformer Networks from the paper "An Introduction to Deep Learning for the Physical Layer".

An Introduction to Deep Learning for the Physical Layer An usable PyTorch implementation of the noisy autoencoder infrastructure in the paper "An Intr

Gram.AI 120 Nov 21, 2022
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021
Submodular Subset Selection for Active Domain Adaptation (ICCV 2021)

S3VAADA: Submodular Subset Selection for Virtual Adversarial Active Domain Adaptation ICCV 2021 Harsh Rangwani, Arihant Jain*, Sumukh K Aithal*, R. Ve

Video Analytics Lab -- IISc 13 Dec 28, 2022
NeuralDiff: Segmenting 3D objects that move in egocentric videos

NeuralDiff: Segmenting 3D objects that move in egocentric videos Project Page | Paper + Supplementary | Video About This repository contains the offic

Vadim Tschernezki 14 Dec 05, 2022
Template repository for managing machine learning research projects built with PyTorch-Lightning

Tutorial Repository with a minimal example for showing how to deploy training across various compute infrastructure.

Sidd Karamcheti 3 Feb 11, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
Official implementation of Deep Convolutional Dictionary Learning for Image Denoising.

DCDicL for Image Denoising Hongyi Zheng*, Hongwei Yong*, Lei Zhang, "Deep Convolutional Dictionary Learning for Image Denoising," in CVPR 2021. (* Equ

Z80 91 Dec 21, 2022