Measure WWjj polarization fraction

Overview

WlWl Polarization

Measure WWjj polarization fraction

sm sm_lltt sm_lttl

Paper: arXiv:2109.09924
Notice: This code can only be used for the inference process, if you want to train your own model, please contact [email protected].

Requirements

  • Both Linux and Windows are supported.
  • 64-bit Python3.6(or higher, recommend 3.8) installation.
  • Tensorflow2.x(recommend 2.6), Numpy(recommend 1.19.5), Matplotlib(recommend 3.4.2)
  • One or more high-end NVIDIA GPUs(at least 4 GB of DRAM), NVIDIA drivers, CUDA(recommend 11.4) toolkit and cuDNN(recommend 8.2.x).

Preparing dataset

The raw dataset needs to be transformed before it can be imported into the model.

  • You need to create a raw dataset(we provide a test dataset, stored in ./raw/), the data structure is as follows:
The file has N events:
   Event 1
   Event 2
   ...
   Event N
One event for every 6 lines:
   1. first lepton 
   2. second lepton 
   3. first FB jet 
   4. second FB jet 
   5. MET 
   6. remaining jet 
Each line has the following five columns of elements:
   1.ParticleID  2.Px  3.Py  4.Pz  5.E
The format of an event in the dataset is as follows:
   ...
   -1.0  166.023   5.35817   10.784    166.459
   1.0   -36.1648  -64.1513  -28.9064  79.113
   7.0   -11.3233  -39.6316  -318.178  320.85
   7.0   -34.2795  22.0472   622.79    624.128
   0.0   -22.6711  52.8976   -422.567  426.468
   6.0   -49.9758  29.3283   274.517   294.098
   ...

ParticleID: 1 for electron, 2 for muon, 3 for tau, 4 for b-jet, 5 for normal jet, 0 for met, 6 for remaining jets, 7 for forward backward jet, signs represent electric charge.

  • Use the command python create_dataset.py YOUR_RAWDATA_PATH, it will create a file with the same name as YOUR_RAWDATA_PATH in the ./dataset/.

Using pre-trained models

After completing the preparation of the dataset, you can use the model to predict the polarization fraction.

  • Pre-trained weights are placed in ./weights/.
  • Use the command python inference.py --dataset YOUR_TRADATA_NAME --model_name <MODEL_NAME> --energy_level <ENERGY_LEVEL>, it will give the polarization fractions.

Notice: <ENERGY_LEVEL> should correspond to the collision energy of events.

Example

Run the following command to get the polarization fractions for the standard model:

python create_dataset.py ./raw/sm.dat
python inference.py --dataset sm --model_name TRANS --energy_level 13

Citation

@misc{li2021polarization,
    title={Polarization measurement for the dileptonic channel of $W^+ W^-$ scattering using generative adversarial network},
    author={Jinmian Li and Cong Zhang and Rao Zhang},
    year={2021},
    eprint={2109.09924},
    archivePrefix={arXiv},
    primaryClass={hep-ph}
}
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
AI drive app that can help user become beautiful.

爱美丽 Beauty 简体中文 Features Beauty is an AI drive app that can help user become beautiful. it contain those functions: face score cheek face beauty repor

Starved Midnight 1 Jan 30, 2022
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Thomas Dunlap 2 Feb 18, 2022
Pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms

Deep High Dynamic Range Imaging Benchmark This repository is the pytorch impleme

Tianhong Dai 5 Nov 16, 2022
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
Rendering color and depth images for ShapeNet models.

Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas

Yinyu Nie 41 Dec 19, 2022
A python library for implementing a recommender system

python-recsys A python library for implementing a recommender system. Installation Dependencies python-recsys is build on top of Divisi2, with csc-pys

Oscar Celma 1.5k Dec 17, 2022
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF

Simon Meister 270 Nov 06, 2022
Huawei Hackathon 2021 - Sweden (Stockholm)

huawei-hackathon-2021 Contributors DrakeAxelrod Challenge Requirements: python=3.8.10 Standard libraries (no importing) Important factors: Data depend

Drake Axelrod 32 Nov 08, 2022
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022
Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Zhengxia Zou 1.5k Dec 28, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data

Clinica Software platform for clinical neuroimaging studies Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL ClinicaDL About The Proj

ARAMIS Lab 165 Dec 29, 2022
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
A custom DeepStack model that has been trained detecting ONLY the USPS logo

This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not

Stephen Stratoti 9 Dec 27, 2022
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

Shuyang Sun 117 Dec 11, 2022